Skip to main content

Targeted Single Gene Mutation in Esophageal Adenocarcinoma

  • Protocol
  • First Online:
Esophageal Adenocarcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1756))

Abstract

Esophageal adenocarcinoma is heterogeneous and studies have reviewed many important mutations that contribute to the pathogenesis of the cancer. These discoveries have helped paved the way into identifying new gene markers or gene targets to develop novel molecular directed therapy for better patient outcomes in esophageal adenocarcinoma. Despite the recent bloom in next-generation sequencing, Sanger sequencing still represents the gold standard method for the study of the driver genes in esophageal adenocarcinoma. This chapter focuses on the sequencing techniques in identification of single gene mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nones K, Waddell N, Wayte N, Patch AM, Bailey P, Newell F, Holmes O, Fink JL, Quinn MC, Tang YH, Lampe G, Quek K, Loffler KA, Manning S, Idrisoglu S, Miller D, Xu Q, Waddell N, Wilson PJ, Bruxner TJ, Christ AN, Harliwong I, Nourse C, Nourbakhsh E, Anderson M, Kazakoff S, Leonard C, Wood S, Simpson PT, Reid LE, Krause L, Hussey DJ, Watson DI, Lord RV, Nancarrow D, Phillips WA, Gotley D, Smithers BM, Whiteman DC, Hayward NK, Campbell PJ, Pearson JV, Grimmond SM, Barbour AP (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5:5224. https://doi.org/10.1038/ncomms6224

    Article  CAS  PubMed  Google Scholar 

  2. Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, Murtaza M, Ong CA, Lao-Sirieix P, Dunning MJ, Smith L, Smith ML, Anderson CL, Carvalho B, O’Donovan M, Underwood TJ, May AP, Grehan N, Hardwick R, Davies J, Oloumi A, Aparicio S, Caldas C, Eldridge MD, Edwards PA, Rosenfeld N, Tavare S, Fitzgerald RC, Consortium O (2014) Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet 46(8):837–843. https://doi.org/10.1038/ng.3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shefler E, McKenna A, Carter SL, Cibulskis K, Sivachenko A, Saksena G, Voet D, Ramos AH, Auclair D, Thompson K, Sougnez C, Onofrio RC, Guiducci C, Beroukhim R, Zhou Z, Lin L, Lin J, Reddy R, Chang A, Landrenau R, Pennathur A, Ogino S, Luketich JD, Golub TR, Gabriel SB, Lander ES, Beer DG, Godfrey TE, Getz G, Bass AJ (2013) Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 45(5):478–486. https://doi.org/10.1038/ng.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Contino G, Eldridge MD, Secrier M, Bower L, Fels Elliott R, Weaver J, Lynch AG, Edwards PA, Fitzgerald RC (2016) Whole-genome sequencing of nine esophageal adenocarcinoma cell lines. F1000Res 5:1336. https://doi.org/10.12688/f1000research.7033.1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang K, Johnson A, Ali SM, Klempner SJ, Bekaii-Saab T, Vacirca JL, Khaira D, Yelensky R, Chmielecki J, Elvin JA, Lipson D, Miller VA, Stephens PJ, Ross JS (2015) Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist 20(10):1132–1139. https://doi.org/10.1634/theoncologist.2015-0156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fecteau RE, Kong J, Kresak A, Brock W, Song Y, Fujioka H, Elston R, Willis JE, Lynch JP, Markowitz SD, Guda K, Chak A (2016) Association between germline mutation in VSIG10L and familial Barrett neoplasia. JAMA Oncol 2(10):1333–1339. https://doi.org/10.1001/jamaoncol.2016.2054

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J (2002) p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology 122(4):1113–1121

    Article  CAS  PubMed  Google Scholar 

  8. Silvers AL, Lin L, Bass AJ, Chen G, Wang Z, Thomas DG, Lin J, Giordano TJ, Orringer MB, Beer DG, Chang AC (2010) Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity. Clin Cancer Res 16(7):2009–2021. https://doi.org/10.1158/1078-0432.ccr-09-2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bian YS, Osterheld MC, Bosman FT, Benhattar J, Fontolliet C (2001) p53 gene mutation and protein accumulation during neoplastic progression in Barrett’s esophagus. Mod Pathol 14(5):397–403. https://doi.org/10.1038/modpathol.3880324

    Article  CAS  PubMed  Google Scholar 

  10. Stachler MD, Taylor-Weiner A, Peng S, McKenna A, Agoston AT, Odze RD, Davison JM, Nason KS, Loda M, Leshchiner I, Stewart C, Stojanov P, Seepo S, Lawrence MS, Ferrer-Torres D, Lin J, Chang AC, Gabriel SB, Lander ES, Beer DG, Getz G, Carter SL, Bass AJ (2015) Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet 47(9):1047–1055. https://doi.org/10.1038/ng.3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolan K, Walker SJ, Gosney J, Field JK, Sutton R (2003) TP53 mutations in malignant and premalignant Barrett’s esophagus. Dis Esophagus 16(2):83–89

    Article  CAS  PubMed  Google Scholar 

  12. Doak SH, Jenkins GJ, Parry EM, Griffiths AP, Shah V, Baxter JN, Parry JM (2003) Characterisation of p53 status at the gene, chromosomal and protein levels in esophageal adenocarcinoma. Br J Cancer 89(9):1729–1735. https://doi.org/10.1038/sj.bjc.6601323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung SM, Kao J, Hyjek E, Chen YT (2007) p53 in esophageal adenocarcinoma: a critical reassessment of mutation frequency and identification of 72Arg as the dominant allele. Int J Oncol 31(6):1351–1355

    CAS  PubMed  Google Scholar 

  14. Novotna K, Trkova M, Pazdro A, Smejkal M, Soukupova A, Kodetova D, Smejkal P, Sedlacek Z (2006) TP53 gene mutations are rare in nondysplastic Barrett’s esophagus. Dig Dis Sci 51(1):110–113. https://doi.org/10.1007/s10620-006-3093-3

    Article  CAS  PubMed  Google Scholar 

  15. Del Portillo A, Lagana SM, Yao Y, Uehara T, Jhala N, Ganguly T, Nagy P, Gutierrez J, Luna A, Abrams J, Liu Y, Brand R, Sepulveda JL, Falk GW, Sepulveda AR (2015) Evaluation of mutational testing of preneoplastic Barrett’s mucosa by next-generation sequencing of formalin-fixed, paraffin-embedded endoscopic samples for detection of concurrent dysplasia and adenocarcinoma in Barrett’s esophagus. J Mol Diagn 17(4):412–419. https://doi.org/10.1016/j.jmoldx.2015.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67. https://doi.org/10.1371/journal.pmed.0040067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madani K, Zhao R, Lim HJ, Casson AG (2010) Prognostic value of p53 mutations in esophageal adenocarcinoma: final results of a 15-year prospective study. Eur J Cardiothorac Surg 37(6):1427–1432. https://doi.org/10.1016/j.ejcts.2009.12.018

    Article  PubMed  Google Scholar 

  18. Casson AG, Evans SC, Gillis A, Porter GA, Veugelers P, Darnton SJ, Guernsey DL, Hainaut P (2003) Clinical implications of p53 tumor suppressor gene mutation and protein expression in esophageal adenocarcinomas: results of a ten-year prospective study. J Thorac Cardiovasc Surg 125(5):1121–1131. https://doi.org/10.1067/mtc.2003.176

    Article  CAS  PubMed  Google Scholar 

  19. Rajendra S, Wang B, Merrett N, Sharma P, Humphris J, Lee HC, Wu J (2016) Genomic analysis of HPV-positive versus HPV-negative esophageal adenocarcinoma identifies a differential mutational landscape. J Med Genet 53(4):227–231. https://doi.org/10.1136/jmedgenet-2015-103411

    Article  CAS  PubMed  Google Scholar 

  20. Astori G, Merluzzi S, Arzese A, Brosolo P, de Pretis G, Maieron R, Pipan C, Botta GA (2001) Detection of human papillomavirus DNA and p53 gene mutations in esophageal cancer samples and adjacent normal mucosa. Digestion 64(1):9–14. https://doi.org/10.1159/000048834

    Article  CAS  PubMed  Google Scholar 

  21. Wijnhoven BP, de Both NJ, van Dekken H, Tilanus HW, Dinjens WN (1999) E-cadherin gene mutations are rare in adenocarcinomas of the esophagus. Br J Cancer 80(10):1652–1657. https://doi.org/10.1038/sj.bjc.6690577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee SH, Zhou S, Zhou T, Hong G (2016) Sanger sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del mutation screen on pap smear cytology samples. Int J Mol Sci 17(2):229. https://doi.org/10.3390/ijms17020229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tu B, Cha N, Yang R, Ng J, Hurley CK (2013) A one-step DNA sequencing strategy to HLA type hematopoietic stem cell donors at recruitment – rethinking typing strategies. Tissue Antigens 81(3):150–160. https://doi.org/10.1111/tan.12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Renaud M, Marcel C, Rudolf G, Schaeffer M, Lagha-Boukbiza O, Chanson JB, Chelly J, Anheim M, Tranchant C (2016) A step toward essential tremor gene discovery: identification of extreme phenotype and screening of HTRA2 and ANO3. BMC Neurol 16(1):238. https://doi.org/10.1186/s12883-016-0748-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Asan, Ma D, Lv F, Xu X, Wang J, Xia W, Jiang Y, Wang O, Xing X, Yu W, Wang J, Sun J, Song L, Zhu Y, Yang H, Wang J, Li M (2017) Gene mutation spectrum and genotype-phenotype correlation in a cohort of Chinese osteogenesis imperfecta patients revealed by targeted next generation sequencing. Osteoporos Int. https://doi.org/10.1007/s00198-017-4143-8

  26. Jinda W, Taylor TD, Suzuki Y, Thongnoppakhun W, Limwongse C, Lertrit P, Trinavarat A, Atchaneeyasakul LO (2017) Whole exome sequencing in eight Thai patients with Leber congenital amaurosis reveals mutations in the CTNNA1 and CYP4V2 genes. Invest Ophthalmol Vis Sci 58(4):2413–2420. https://doi.org/10.1167/iovs.16-21322

    Article  PubMed  Google Scholar 

  27. Wang DN, Wang ZQ, Yan L, He J, Lin MT, Chen WJ, Wang N (2017) Clinical and mutational characteristics of Duchenne muscular dystrophy patients based on a comprehensive database in South China. Neuromuscul Disord 27(8):715–722. https://doi.org/10.1016/j.nmd.2017.02.010

    Article  PubMed  Google Scholar 

  28. Laarabi FZ, Ratbi I, Elalaoui SC, Mezzouar L, Doubaj Y, Bouguenouch L, Ouldim K, Benjaafar N, Sefiani A (2017) High frequency of the recurrent c.1310_1313delAAGA BRCA2 mutation in the North-East of Morocco and implication for hereditary breast-ovarian cancer prevention and control. BMC Res Notes 10(1):188. https://doi.org/10.1186/s13104-017-2511-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Peng P, Du Y, Ren Y, Chen L, Rao Y, Wang W (2017) Early detection of multidrug- and pre-extensively drug-resistant tuberculosis from smear-positive sputum by direct sequencing. BMC Infect Dis 17(1):300. https://doi.org/10.1186/s12879-017-2409-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dougherty BA, Lai Z, Hodgson DR, Orr MCM, Hawryluk M, Sun J, Yelensky R, Spencer SK, Robertson JD, Ho TW, Fielding A, Ledermann JA, Barrett JC (2017) Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting. Oncotarget 8(27):43653–43661. https://doi.org/10.18632/oncotarget.17613

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tiedje V, Ting S, Herold T, Synoracki S, Latteyer S, Moeller LC, Zwanziger D, Stuschke M, Fuehrer D, Schmid KW (2017) NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 8(26):42613–42620. https://doi.org/10.18632/oncotarget.17300

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcia E, Hayden A, Birts C, Britton E, Cowie A, Pickard K, Mellone M, Choh C, Derouet M, Duriez P, Noble F, White MJ, Primrose JN, Strefford JC, Rose-Zerilli M, Thomas GJ, Ang Y, Sharrocks AD, Fitzgerald RC, Underwood TJ, Consortium O (2016) Authentication and characterisation of a new esophageal adenocarcinoma cell line: MFD-1. Sci Rep 6:32417. https://doi.org/10.1038/srep32417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Streppel MM, Lata S, DelaBastide M, Montgomery EA, Wang JS, Canto MI, Macgregor-Das AM, Pai S, Morsink FH, Offerhaus GJ, Antoniou E, Maitra A, McCombie WR (2014) Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett’s esophagus. Oncogene 33(3):347–357. https://doi.org/10.1038/onc.2012.586

    Article  CAS  PubMed  Google Scholar 

  34. Ferrer-Torres D, Nancarrow DJ, Kuick R, Thomas DG, Nadal E, Lin J, Chang AC, Reddy RM, Orringer MB, Taylor JM, Wang TD, Beer DG (2016) Genomic similarity between gastroesophageal junction and esophageal Barrett’s adenocarcinomas. Oncotarget 7(34):54867–54882. https://doi.org/10.18632/oncotarget.10253

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zou H, Osborn NK, Harrington JJ, Klatt KK, Molina JR, Burgart LJ, Ahlquist DA (2005) Frequent methylation of eyes absent 4 gene in Barrett’s esophagus and esophageal adenocarcinoma. Cancer Epidemiol Biomark Prev 14(4):830–834. https://doi.org/10.1158/1055-9965.epi-04-0506

    Article  CAS  Google Scholar 

  36. Taniere P, Martel-Planche G, Maurici D, Lombard-Bohas C, Scoazec JY, Montesano R, Berger F, Hainaut P (2001) Molecular and clinical differences between adenocarcinomas of the esophagus and of the gastric cardia. Am J Pathol 158(1):33–40. https://doi.org/10.1016/s0002-9440(10)63941-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Onwuegbusi BA, Aitchison A, Chin SF, Kranjac T, Mills I, Huang Y, Lao-Sirieix P, Caldas C, Fitzgerald RC (2006) Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 55(6):764–774. https://doi.org/10.1136/gut.2005.076430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agrawal N, Jiao Y, Bettegowda C, Hutfless SM, Wang Y, David S, Cheng Y, Twaddell WS, Latt NL, Shin EJ, Wang LD, Wang L, Yang W, Velculescu VE, Vogelstein B, Papadopoulos N, Kinzler KW, Meltzer SJ (2012) Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov 2(10):899–905. https://doi.org/10.1158/2159-8290.cd-12-0189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Li X, Cheng Y, Sun X, Sun X, Self S, Kooperberg C, Dai JY (2015) Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma. Hum Genomics 9:22. https://doi.org/10.1186/s40246-015-0044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred K. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, K.T.W., Smith, R.A., Gopalan, V., Lam, A.K. (2018). Targeted Single Gene Mutation in Esophageal Adenocarcinoma. In: Lam, A. (eds) Esophageal Adenocarcinoma. Methods in Molecular Biology, vol 1756. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7734-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7734-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7733-8

  • Online ISBN: 978-1-4939-7734-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics