Skip to main content

Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes

  • Protocol
  • First Online:
Transcriptome Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

In recent years, transcriptome sequencing has become very popular, encompassing a wide variety of applications from simple mRNA profiling to discovery and analysis of the entire transcriptome. One of the most common aims of transcriptome sequencing is to identify genes that are differentially expressed (DE) between two or more biological conditions, and to infer associated pathways and gene networks from expression profiles. It can provide avenues for further systematic investigation into potential biologic mechanisms. Gene Set (GS) enrichment analysis is a popular approach to identify pathways or sets of genes that are significantly enriched in the context of differentially expressed genes. However, the approach considers a pathway as a simple gene collection disregarding knowledge of gene or protein interactions. In contrast, topology-based methods integrate the topological structure of a pathway and gene network into the analysis. To provide a panoramic view of such approaches, this chapter demonstrates several recent computational workflows, including gene set enrichment and topology-based methods, for analysis of the DE pathways and gene networks from transcriptome-wide sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-Seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bayerlova M, Jung K, Kramer F, Klemm F, Bleckmann A, Beissbarth T (2015) Comparative study on gene set and pathway topology-based enrichment methods. BMC Bioinformatics 16:334. https://doi.org/10.1186/s12859-015-0751-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jaakkola MK, Elo LL (2016) Empirical comparison of structure-based pathway methods. Brief Bioinform 17(2):336–345. https://doi.org/10.1093/bib/bbv049

    Article  PubMed  Google Scholar 

  4. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nam D, Kim S-Y (2008) Gene-set approach for expression pattern analysis. Brief Bioinform 9(3):189–197

    Article  PubMed  Google Scholar 

  6. Huang d W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  7. Barry WT, Nobel AB, Wright FA (2005) Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21(9):1943–1949. https://doi.org/10.1093/bioinformatics/bti260

    Article  CAS  PubMed  Google Scholar 

  8. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465. https://doi.org/10.1093/bioinformatics/bth088

    Article  CAS  PubMed  Google Scholar 

  9. Team RC (2014) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing 14(3):279-293.

    Google Scholar 

  10. Charmpi K, Ycart B (2015) Weighted Kolmogorov Smirnov testing: an alternative for gene set enrichment analysis. Stat Appl Genet Mol Biol 14. https://doi.org/10.1515/sagmb-2014-0077

  11. Fontoura CARS, Castellani G, Mombach JCM (2016) The R implementation of the CRAN package PATHChange, a tool to study genetic pathway alterations in transcriptomic data. Comput Biol Med 78:76–80. https://doi.org/10.1016/j.compbiomed.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  12. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17(10):1537–1545. https://doi.org/10.1101/gr.6202607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, Voichiţa C, Drăghici S (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278. https://doi.org/10.3389/fphys.2013.00278

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahsan S, Draghici S (2017) Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr Protoc Bioinformatics 57:7.15.11–17.15.30. https://doi.org/10.1002/cpbi.24

    Google Scholar 

  15. Ibrahim M, Jassim S, Cawthorne MA, Langlands K (2014) A MATLAB tool for pathway enrichment using a topology-based pathway regulation score. BMC Bioinformatics 15:358. https://doi.org/10.1186/s12859-014-0358-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wadi L, Meyer M, Weiser J, Stein LD, Reimand J (2016) Impact of outdated gene annotations on pathway enrichment analysis. Nat Methods 13(9):705–706. https://doi.org/10.1038/nmeth.3963

    Article  CAS  PubMed  Google Scholar 

  17. Dona MSI, Prendergast LA, Mathivanan S, Keerthikumar S, Salim A (2017) Powerful differential expression analysis incorporating network topology for next-generation sequencing data. Bioinformatics 33(10):1505–1513. https://doi.org/10.1093/bioinformatics/btw833

    Article  PubMed  Google Scholar 

  18. Jacob L, Neuvial P, Dudoit S (2010) Gains in power from structured two-sample tests of means on graphs. arXiv preprint arXiv:10095173

    Google Scholar 

  19. Martini P, Sales G, Massa MS, Chiogna M, Romualdi C (2013) Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res 41(1):e19–e19. https://doi.org/10.1093/nar/gks866

    Article  CAS  PubMed  Google Scholar 

  20. Massa MS, Chiogna M, Romualdi C (2010) Gene set analysis exploiting the topology of a pathway. BMC Syst Biol 4:121. https://doi.org/10.1186/1752-0509-4-121

    PubMed  PubMed Central  Google Scholar 

  21. Sales G, Calura E, Cavalieri D, Romualdi C (2012) graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13:20–20. https://doi.org/10.1186/1471-2105-13-20

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clough E, Barrett T (2016) The Gene Expression Omnibus database. Methods Mol Biol 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847.

    Google Scholar 

  24. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39(Database):D685–D690. https://doi.org/10.1093/nar/gkq1039

    Article  CAS  PubMed  Google Scholar 

  25. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  26. Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, Jassal B, May B, Shamovsky V, Duenas C (2017) Reactome enhanced pathway visualization. Bioinformatics 33(21):3461–3467

    Article  PubMed  Google Scholar 

  27. Luna A, Babur O, Aksoy BA, Demir E, Sander C (2016) PaxtoolsR: pathway analysis in R using Pathway Commons. Bioinformatics 32(8):1262–1264. https://doi.org/10.1093/bioinformatics/btv733

    Article  CAS  PubMed  Google Scholar 

  28. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, Shih JY, Yang PC, Hsiao CK, Lai LC, Chuang EY (2010) Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prevent 19(10):2590–2597. https://doi.org/10.1158/1055-9965.epi-10-0332

    Article  CAS  Google Scholar 

  31. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-Seq experiments. Bioinformatics 29(8):1035–1043. https://doi.org/10.1093/bioinformatics/btt087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  35. Tarazona S, García F, Ferrer A, Dopazo J, Conesa A (2012) NOIseq: a RNA-Seq differential expression method robust for sequencing depth biases. EMBnet J 17(B):18–19

    Article  Google Scholar 

  36. Kim SK, Kim SY, Kim JH, Roh SA, Cho DH, Kim YS, Kim JC (2014) A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol Oncol 8(8):1653–1666. https://doi.org/10.1016/j.molonc.2014.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478. https://doi.org/10.1093/nar/gku1204

    Article  CAS  PubMed  Google Scholar 

  38. Sales G, Calura E, Romualdi C (2012) GRAPH interaction from pathway topological environment BMC Bioinformatics 2013

  39. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42(Database issue):D459–D471. https://doi.org/10.1093/nar/gkt1103

    Article  CAS  PubMed  Google Scholar 

  40. Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41(Database issue):D377–D386. https://doi.org/10.1093/nar/gks1118

    CAS  PubMed  Google Scholar 

  41. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the Pathway Interaction Database. Nucleic Acids Res 37(Database issue):D674–D679. https://doi.org/10.1093/nar/gkn653

    Article  CAS  PubMed  Google Scholar 

  42. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 43(Database issue):D1079–D1085. https://doi.org/10.1093/nar/gku1071

    Article  CAS  PubMed  Google Scholar 

  43. Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33(Database issue):D54–D58. https://doi.org/10.1093/nar/gki031

    Article  CAS  PubMed  Google Scholar 

  44. Knijnenburg TA, Wessels LFA, Reinders MJT, Shmulevich I (2009) Fewer permutations, more accurate P-values. Bioinformatics 25(12):i161–i168. https://doi.org/10.1093/bioinformatics/btp211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. JZ2017YYPY0899). The authors are grateful to the editors and the anonymous reviewers for their valuable suggestions and comments facilitating the improvement of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Q., Sun, Ma., Yan, P. (2018). Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics