Skip to main content

Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures

  • Protocol
  • First Online:
Glioblastoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1741))

Abstract

Glioblastoma (GBM), a deadly primary brain malignancy, manifests pronounced radioresistance. Identifying agents that improve the sensitivity of tumor tissue to radiotherapy is critical for improving patient outcomes. The response to ionizing radiation is regulated by both cell-intrinsic and -extrinsic mechanisms. In particular, the tumor microenvironment is known to promote radioresistance in GBM. Therefore, model systems used to test radiosensitizing agents need to take into account the tumor microenvironment. We recently showed that GBM explant cultures represent an adaptable ex vivo platform for rapid and personalized testing of radiosensitizers. These explants preserve the cellular composition and tissue architecture of parental patient tumors and therefore capture the microenvironmental context that critically determines the response to radiotherapy. This chapter focuses on the detailed protocol for testing candidate radiosensitizing agents in GBM explants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Sprong D, Janssen HL, Vens C, Begg AC (2006) Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys 64:562–572

    Article  CAS  PubMed  Google Scholar 

  4. Vens C, Dahmen-Mooren E, Verwijs-Janssen M, Blyweert W, Graversen L, Bartelink H, Begg AC (2002) The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res 30:2995–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kasten-Pisula U, Windhorst S, Dahm-Daphi J, Mayr G, Dikomey E (2007) Radiosensitization of tumour cell lines by the polyphenol Gossypol results from depressed double-strand break repair and not from enhanced apoptosis. Radiother Oncol 83:296–303

    Article  CAS  PubMed  Google Scholar 

  6. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  7. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ (2012) The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia 14:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res 72:4119–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  10. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    Article  CAS  PubMed  Google Scholar 

  11. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM (2002) Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158:486–492

    Article  CAS  PubMed  Google Scholar 

  13. Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508

    Article  PubMed  Google Scholar 

  14. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K et al (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 99:8173–8178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279:2273–2280

    Article  CAS  PubMed  Google Scholar 

  16. Banath JP, Macphail SH, Olive PL (2004) Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res 64:7144–7149

    Article  CAS  PubMed  Google Scholar 

  17. MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL (2003) Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 79:351–358

    Article  CAS  PubMed  Google Scholar 

  18. MacPhail SH, Banath JP, Yu Y, Chu E, Olive PL (2003) Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res 159:759–767

    Article  CAS  PubMed  Google Scholar 

  19. Lowndes NF, Toh GW (2005) DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15:R99–R102

    Article  CAS  PubMed  Google Scholar 

  20. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci U S A 100:5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olive PL, Banath JP (2004) Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 58:331–335

    Article  CAS  PubMed  Google Scholar 

  22. Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L et al (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668

    Article  CAS  PubMed  Google Scholar 

  23. Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J et al (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160

    Article  CAS  PubMed  Google Scholar 

  24. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514

    Article  CAS  PubMed  Google Scholar 

  25. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    Article  CAS  PubMed  Google Scholar 

  26. Bayin NS, Ma L, Thomas C, Baitalmal R, Sure A, Fansiwala K, Bustoros M, Golfinos JG, Pacione D, Snuderl M et al (2016) Patient-specific screening using high-grade glioma explants to determine potential radiosensitization by a TGF-beta small molecule inhibitor. Neoplasia 18:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shimizu F, Hovinga KE, Metzner M, Soulet D, Tabar V (2011). Organotypic explant culture of glioblastoma multiforme and subsequent single-cell suspension. Curr Protoc Stem Cell Biol. Chapter 3, Unit 3.5

    Google Scholar 

  29. Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, Giese A, Schopow K, Hellwig C, Schafer M et al (2013) Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro-Oncology 15:670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitris G. Placantonakis or Mary Helen Barcellos-Hoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayin, N.S., Ma, L., Placantonakis, D.G., Barcellos-Hoff, M.H. (2018). Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures. In: Placantonakis, D. (eds) Glioblastoma. Methods in Molecular Biology, vol 1741. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7659-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7659-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7658-4

  • Online ISBN: 978-1-4939-7659-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics