Skip to main content

Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1740))

Abstract

Current approaches for collection of extracellular vesicles (EV) are based on classical cell culture media production. This involves collection from cells grown in flasks, and can require multiple rounds of centrifugation or filtration, followed by ultracentrifugation or density gradient centrifugation. There are several limitations of these approaches, for example, they require a large input volume, the yield and concentration is low, and the process is time consuming. Most cell cultures require the use of fetal bovine serum which contains a large amount of endogenous EV that can contaminate isolations of cell-derived EVs. The use of cell cultures within a hollow fiber bioreactor could address many of these limitations and produce a continuous source of highly concentrated EVs without contamination from serum EVs, and that are suitable for downstream applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gramer MJ, Poeschl DM (2000) Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system. Cytotechnology 34(1–2):111–119. https://doi.org/10.1023/A:1008167713696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Storm MP, Sorrell I, Shipley R, Regan S, Luetchford KA, Sathish J, Webb S, Ellis MJ (2016) Hollow fiber bioreactors for in vivo-like mammalian tissue culture. J Vis Exp (111). https://doi.org/10.3791/53431

  3. Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Gursel I, Pavlakis GN (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205. https://doi.org/10.1016/j.biomaterials.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  4. Tapia F, Vazquez-Ramirez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 100(5):2121–2132. https://doi.org/10.1007/s00253-015-7267-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barckhausen C, Rice B, Baila S, Sensebe L, Schrezenmeier H, Nold P, Hackstein H, Rojewski MT (2016) GMP-compliant expansion of clinical-grade human mesenchymal stromal/stem cells using a closed hollow fiber bioreactor. Methods Mol Biol 1416:389–412. https://doi.org/10.1007/978-1-4939-3584-0_23

    Article  CAS  PubMed  Google Scholar 

  6. Curcio E, Piscioneri A, Salerno S, Tasselli F, Morelli S, Drioli E, Bartolo LD (2012) Human lymphocytes cultured in 3-D bioreactors: influence of configuration on metabolite transport and reactions. Biomaterials 33(33):8296–8303. https://doi.org/10.1016/j.biomaterials.2012.07.065

    Article  CAS  PubMed  Google Scholar 

  7. De Bartolo L, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, Tasselli F, Bader A, Drioli E (2009) Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30(13):2531–2543. https://doi.org/10.1016/j.biomaterials.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248. https://doi.org/10.1002/hep.24504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kogure T, Patel T (2013) Isolation of extracellular nanovesicle microRNA from liver cancer cells in culture. Methods Mol Biol 1024:11–18. https://doi.org/10.1007/978-1-62703-453-1_2

    Article  CAS  PubMed  Google Scholar 

  10. Xu R, Simpson RJ, Greening DW (2017) A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. Methods Mol Biol 1545:91–116. https://doi.org/10.1007/978-1-4939-6728-5_7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yan, I.K., Shukla, N., Borrelli, D.A., Patel, T. (2018). Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture. In: Patel, T. (eds) Extracellular RNA. Methods in Molecular Biology, vol 1740. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7652-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7652-2_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7651-5

  • Online ISBN: 978-1-4939-7652-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics