Skip to main content

Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1722))

Abstract

Human stem cells and their progeny are valuable for a variety of research applications and have the potential to revolutionize approaches to regenerative medicine. However, we currently have limited tools to permit live isolation of homogeneous populations of cells apt for mechanistic studies or cellular therapies. While these challenges can be overcome through the use of immunophenotyping based on accessible cell surface markers, the success of this process depends on the availability of reliable antibodies and well-characterized markers, which are lacking for most stem cell lineages. This chapter outlines an iterative process for the development of new cell surface marker barcodes for identifying and selecting stem cell derived progeny of specific cell types, subtypes, and maturation stages, where antibody-independent identification of cell surface proteins is achieved using a modern chemoproteomic approach to specifically identify N-glycoproteins localized to the cell surface. By taking advantage of a large repository of available cell surfaceome data, proteins that are unlikely to confer cell type specificity can be rapidly eliminated from consideration. Subsequently, targeted quantitation by mass spectrometry can be used to refine candidates of interest, and a bioinformatic visualization tool is key to mapping experimental data to candidate protein sequences for the purpose of epitope selection during the antibody development phase. Overall, the process of developing cell surface barcodes for immunophenotyping is iterative and can include multiple rounds of discovery, refinement, and validation depending on the phenotypic resolution required.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111(3):344–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116

    Article  CAS  PubMed  Google Scholar 

  3. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691

    Article  CAS  PubMed  Google Scholar 

  4. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  CAS  PubMed  Google Scholar 

  6. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169(2):338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shizuru JA, Negrin RS, Weissman IL (2005) Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56:509–538

    Article  CAS  PubMed  Google Scholar 

  8. Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, Engel P (2016) Nomenclature of CD molecules from the tenth human leucocyte differentiation antigen workshop. Clin Transl Immunol 5(1):e57

    Article  Google Scholar 

  9. Turac G, Hindley CJ, Thomas R, Davis JA, Deleidi M, Gasser T, Karaoz E, Pruszak J (2013) Combined flow cytometric analysis of surface and intracellular antigens reveals surface molecule markers of human neuropoiesis. PLoS One 8(6):e68519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756

    Article  CAS  PubMed  Google Scholar 

  12. Bye CR, Jonsson ME, Bjorklund A, Parish CL, Thompson LH (2015) Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proc Natl Acad Sci U S A 112(15):E1946–E1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10(4):611–627

    Article  CAS  PubMed  Google Scholar 

  14. Elschenbroich S, Kim Y, Medin JA, Kislinger T (2010) Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics 7(1):141–154

    Article  CAS  PubMed  Google Scholar 

  15. Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850(12):2410–2421

    Article  CAS  PubMed  Google Scholar 

  16. Danzer C, Eckhardt K, Schmidt A, Fankhauser N, Ribrioux S, Wollscheid B et al (2012) Comprehensive description of the N-glycoproteome of mouse pancreatic beta-cells and human islets. J Proteome Res 11(3):1598–1608

    Article  CAS  PubMed  Google Scholar 

  17. Tyleckova J, Valekova I, Zizkova M, Rakocyova M, Marsala S, Marsala M, Gadher SJ, Kovarova H (2016) Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J Proteome 132:13–20

    Article  CAS  Google Scholar 

  18. Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ et al (2013) N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS One 8(2):e55722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hofmann A, Thiesler T, Gerrits B, Behnke S, Sobotzki N, Omasits U et al (2015) Surfaceome of classical Hodgkin and non-Hodgkin lymphoma. Proteomics Clin Appl 9(7–8):661–670

    Article  CAS  PubMed  Google Scholar 

  20. Ducret A, Kux van Geijtenbeek S, Roder D, Simon S, Chin D, Berrera M et al (2015) Identification of six cell surface proteins for specific liver targeting. Proteomics Clin Appl 9(7–8):651–661

    Article  CAS  PubMed  Google Scholar 

  21. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8

    Article  CAS  PubMed  Google Scholar 

  23. Gahmberg CG, Tolvanen M (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci 21(8):308–311

    Article  CAS  PubMed  Google Scholar 

  24. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10(3):e0121314

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D et al (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3(1):185–203

    Article  CAS  Google Scholar 

  26. Domon B, Gallien S (2015) Recent advances in targeted proteomics for clinical applications. Proteomics Clin Appl 9(3–4):423–431

    Article  CAS  PubMed  Google Scholar 

  27. Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886

    Article  CAS  PubMed  Google Scholar 

  28. Mallanna SK, Cayo MA, Twaroski K, Gundry RL, Duncan SA (2016) Mapping the cell-surface N-glycoproteome of human hepatocytes reveals markers for selecting a homogeneous population of iPSC-derived hepatocytes. Stem Cell Rep 7(3):543–556

    Article  CAS  Google Scholar 

  29. Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, Gundry RL (2014) N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl 8(7–8):603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O et al (2012) A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteomics 11(8):303–316

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bausch-Fluck D, Hofmann A, Wollscheid B (2012) Cell surface capturing technologies for the surfaceome discovery of hepatocytes. Methods Mol Biol 909:1–16

    CAS  PubMed  Google Scholar 

  32. Hofmann A, Gerrits B, Schmidt A, Bock T, Bausch-Fluck D, Aebersold R, Wollscheid B (2010) Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood 116(13):e26–e34

    Article  CAS  PubMed  Google Scholar 

  33. Schiess R, Mueller LN, Schmidt A, Mueller M, Wollscheid B, Aebersold R (2009) Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol Cell Proteomics 8(4):624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925

    Article  PubMed  Google Scholar 

  35. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  36. Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, Mechtler K (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13(8):3679–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24

    Article  CAS  PubMed  Google Scholar 

  39. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  40. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  CAS  PubMed  Google Scholar 

  41. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01HL126785 and R01HL134010 and the Paul G. Allen Family Foundation (Grant Award 11715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah L. Gundry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fujinaka, C.M., Waas, M., Gundry, R.L. (2018). Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives. In: Boheler, K., Gundry, R. (eds) The Surfaceome. Methods in Molecular Biology, vol 1722. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7553-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7553-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7551-8

  • Online ISBN: 978-1-4939-7553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics