Skip to main content
Book cover

Peptidomics pp 121–140Cite as

Quantitative Peptidomics: General Considerations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Peptidomics is the detection and identification of the peptides present in a sample, while quantitative peptidomics provides additional information about the amounts of these peptides. Comparison of peptide levels among two or more samples is termed relative quantitation. It is also possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards, which requires a separate standard for each peptide. In contrast, relative quantitation can compare levels of all peptides that are detectable in a sample, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chard T (1987) In: Burdon RH, Van Knippenberg PH (ed) An introduction to radioimmunoassay and related techniques, Elsevier, Amsterdam, p 1–255

    Google Scholar 

  2. Baggerman G, Verleyen P, Clynen E et al (2004) Peptidomics. J Chromatogr B Analyt Technol Biomed Life Sci 803:3–16

    Article  CAS  PubMed  Google Scholar 

  3. Fricker LD, Lim J, Pan H et al (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344

    Article  CAS  PubMed  Google Scholar 

  4. Schrader M, Schultz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182

    Article  CAS  Google Scholar 

  5. Che FY, Yuan Q, Kalinina E et al (2004) Examination of the rate of peptide biosynthesis in neuroendocrine cell lines using a stable isotopic label and mass spectrometry. J Neurochem 90:585–594

    Article  CAS  PubMed  Google Scholar 

  6. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  7. Southey BR, Lee JE, Zamdborg L et al (2014) Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal Chem 86:443–452

    Article  CAS  PubMed  Google Scholar 

  8. Wardman JH, Zhang X, Gagnon S et al (2010) Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J Neurochem 114:215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Pan H, Peng B et al (2010) Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J Neurochem 112:1168–1179

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Che FY, Berezniuk I et al (2008) Peptidṇns for neuropeptide processing. J Neurochem 107:1596–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Che FY, Vathy I, Fricker LD (2006) Quantitative peptidomics in mice: effect of cocaine treatment. J Mol Neurosci 28:265–275

    Article  CAS  PubMed  Google Scholar 

  12. Decaillot FM, Che FY, Fricker LD et al (2006) Peptidomics of Cpefat/fat mouse hypothalamus and striatum: effect of chronic morphine administration. J Mol Neurosci 28:277–284

    Article  CAS  PubMed  Google Scholar 

  13. Lim J, Berezniuk I, Che FY et al (2006) Altered neuropeptide processing in prefrontal cortex of Cpefat/fat mice: implications for neuropeptide discovery. J Neurochem 96:1169–1181

    Article  CAS  PubMed  Google Scholar 

  14. Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  PubMed  Google Scholar 

  15. Ranc V, Petruzziello F, Kretz R et al (2012) Broad characterization of endogenous peptides in the tree shrew visual system. J Proteomics 75:2526–2535

    Article  CAS  PubMed  Google Scholar 

  16. Old WM, Meyer-Arendt K, Aveline-Wolf L et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  PubMed  Google Scholar 

  17. Bures EJ, Courchesne PL, Douglass J et al (2001) Identification of incompletely processed potential carboxypeptidase E substrates from CpEfat/CpEfat mice. Proteomics 1:79–92

    Article  CAS  PubMed  Google Scholar 

  18. Kusebauch U, Campbell DS, Deutsch EW et al (2016) Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166:766–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Picotti P, Clement-Ziza M, Lam H et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fricker LD (2012) Neuropeptides and other bioactive peptides. In: Fricker LD, Devi L (eds) Colloquium series on neuropeptides. Morgan & Claypool Life Sciences, Charleston, SC, p 107

    Google Scholar 

  21. Morano C, Zhang X, Fricker LD (2008) Multiple isotopic labels for quantitative mass spectrometry. Anal Chem 80:9298–9309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Che FY, Fricker LD (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom 40:238–249

    Article  CAS  PubMed  Google Scholar 

  23. Che FY, Fricker LD (2002) Quantitation of neuropeptides in Cpe fat/Cpe fat mice using differential isotopic tags and mass spectrometry. Anal Chem 74:3190–3198

    Article  CAS  PubMed  Google Scholar 

  24. Greer T, Li L (2016) Isotopic N,N-dimethyl leucine (iDiLeu) for absolute quantification of peptides using a standard curve approach. Methods Mol Biol 1410:195–206

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Zhang Y, Xiang F et al (2010) Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics. J Chromatogr A 1217:4463–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang F, Ye H, Chen RB et al (2010) N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem 82:2817–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu L, Li H, Li X et al (2017) Peptidomic analysis of cultured cardiomyocytes exposed to acute ischemic-hypoxia. Cell Physiol Biochem 41:358–368

    Article  CAS  PubMed  Google Scholar 

  28. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  29. Fricker LD (2010) Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Mol Biosyst 6:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan H, Che FY, Peng B et al (2006) The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study. J Neurochem 98:1763–1777

    Article  CAS  PubMed  Google Scholar 

  31. Che FY, Biswas R, Fricker LD (2005) Relative quantitation of peptides in wild type and Cpefat/fat mouse pituitary using stable isotopic tags and mass spectrometry. J Mass Spectrom 40:227–237

    Article  CAS  PubMed  Google Scholar 

  32. Che FY, Yuan Q, Kalinina E et al (2005) Peptidomics of Cpe fat/fat mouse hypothalamus: effect of food deprivation and exercise on peptide levels. J Biol Chem 280:4451–4461

    Article  CAS  PubMed  Google Scholar 

  33. Gomes I, Bobeck EN, Margolis EB et al (2016) Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Sci Signal 9:ra43

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lyons PJ, Fricker LD (2010) Substrate specificity of human carboxypeptidase A6. J Biol Chem 285:38234–38242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tanco S, Zhang X, Morano C et al (2010) Human carboxypeptidase A4: characterization of the substrate specificity and implications for a role in extracellular peptide processing. J Biol Chem 285:18385–18396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berti DA, Morano C, Russo LC et al (2009) Analysis of intracellular substrates and products of thimet oligopeptidase (EC 3.4.24.15) in human embryonic kidney 293 cells. J Biol Chem 284:14105–14116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Che FY, Zhang X, Berezniuk I et al (2007) Optimization of neuropeptide extraction from the mouse hypothalamus. J Proteome Res 6:4667–4676

    Article  CAS  PubMed  Google Scholar 

  38. Dasgupta S, Yang C, Castro LM et al (2016) Analysis of the yeast peptidome and comparison with the human peptidome. PLoS One 11:e0163312

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dasgupta S, Fishman MA, Mahallati H et al (2015) Reduced levels of proteasome products in a mouse striatal cell model of Huntington’s disease. PLoS One 10:e0145333

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dasgupta S, Castro LM, Dulman R et al (2014) Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells. PLoS One 9:e103604

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berezniuk I, Sironi JJ, Wardman J et al (2013) Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 8:e60981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gelman JS, Dasgupta S, Berezniuk I et al (2013) Analysis of peptides secreted from cultured mouse brain tissue. Biochim Biophys Acta 1834:2408–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelman JS, Sironi J, Berezniuk I et al (2013) Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One 8:e53263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fricker LD, Gelman JS, Castro LM et al (2012) Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J Proteome Res 11:1981–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gelman JS, Sironi J, Castro LM et al (2011) Peptidomic analysis of human cell lines. J Proteome Res 10:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berezniuk I, Sironi J, Callaway MB et al (2010) CCP1/Nna1 functions in protein turnover in mouse brain: implications for cell death in Purkinje cell degeneration mice. FASEB J 24:1813–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelman JS, Sironi J, Castro LM et al (2010) Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem 113:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang R, Sioma CS, Thompson RA et al (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74:3662–3669

    Article  CAS  PubMed  Google Scholar 

  49. Fricker LD (2015) Limitations of mass spectrometry-based peptidomic approaches. J Am Soc Mass Spectrom 26:1981–1991

    Article  CAS  PubMed  Google Scholar 

  50. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494

    Article  CAS  PubMed  Google Scholar 

  51. Tolonen AC, Haas W (2014) Quantitative proteomics using reductive dimethylation for stable isotope labeling. J Vis Exp. https://doi.org/10.3791/51416

  52. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  53. Dayon L, Hainard A, Licker V et al (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, Liang D, Cheng Q et al (2017) Peptidomic analysis of fetal heart tissue for identification of endogenous peptides involved in tetralogy of fallot. DNA Cell Biol 36(6):451–461

    Article  CAS  PubMed  Google Scholar 

  55. Frost DC, Greer T, Xiang F et al (2015) Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics. Rapid Commun Mass Spectrom 29:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frost DC, Greer T, Li L (2015) High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics. Anal Chem 87:1646–1654

    Article  CAS  PubMed  Google Scholar 

  57. Greer T, Lietz CB, Xiang F et al (2015) Novel isotopic N,N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach. J Am Soc Mass Spectrom 26:107–119

    Article  CAS  PubMed  Google Scholar 

  58. Hui L, Xiang F, Zhang Y et al (2012) Mass spectrometric elucidation of the neuropeptidome of a crustacean neuroendocrine organ. Peptides 36:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sturm RM, Lietz CB, Li L (2014) Improved isobaric tandem mass tag quantification by ion mobility mass spectrometry. Rapid Commun Mass Spectrom 28:1051–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greer T, Hao L, Nechyporenko A et al (2015) Custom 4-plex DiLeu Isobaric labels enable relative quantification of urinary proteins in men with lower urinary tract symptoms (LUTS). PLoS One 10:e0135415

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lemeer S, Hahne H, Pachl F et al (2012) Software tools for MS-based quantitative proteomics: a brief overview. Methods Mol Biol 893:489–499

    Article  CAS  PubMed  Google Scholar 

  62. Fricker LD (2007) Neuropeptidomics to study peptide processing in animal models of obesity. Endocrinology 148:4185–4190

    Article  CAS  PubMed  Google Scholar 

  63. Berezniuk I, Lyons PJ, Sironi JJ et al (2013) Cytosolic carboxypeptidase 5 removes alpha- and gamma-linked glutamates from tubulin. In: J Biol Chem. https://doi.org/10.1074/jbc.M113.497917

    Google Scholar 

  64. Berezniuk I, Vu HT, Lyons PJ et al (2012) Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-tubulin. J Biol Chem 287:6503–6517

    Article  CAS  PubMed  Google Scholar 

  65. Wardman J, Fricker LD (2011) Quantitative peptidomics of mice lacking peptide-processing enzymes. Methods Mol Biol 768:307–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Che FY, Yan L, Li H et al (2001) Identification of peptides from brain and pituitary of Cpe fat/Cpe fat mice. Proc Natl Acad Sci U S A 98:9971–9976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Jonathan Sweedler, Lingjun Li, and Michael Schrader for helpful editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Fricker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fricker, L. (2018). Quantitative Peptidomics: General Considerations. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics