Skip to main content

In Vivo Pharmacokinetics of Magnetic Nanoparticles

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Over the past few years, many papers have been published on the nanomedical applications of magnetic nanoparticles. However, most studies lack important information about the in vivo behavior of these nanoparticles, which is a critical aspect for their rational design. In this chapter we describe a simple protocol for the in vivo characterization of the pharmacokinetics of magnetic nanoparticles intravenously injected in mice, using basic MRI sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Petros RA, Desimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  PubMed  Google Scholar 

  2. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  CAS  PubMed  Google Scholar 

  3. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Article  CAS  Google Scholar 

  4. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  CAS  PubMed  Google Scholar 

  5. Pernia Leal M, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T (2012) Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel. ACS Nano 6(12):10535–10545

    Article  CAS  PubMed  Google Scholar 

  6. Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):831–844

    Article  CAS  PubMed  Google Scholar 

  7. Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):126–143

    Article  CAS  PubMed  Google Scholar 

  8. Challenor M, Gong P, Lorenser D, House MJ, Woodward RC, St Pierre T, Fitzgerald M, Dunlop SA, Sampson DD, Iyer KS (2014) The influence of NaYF4:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Dalton Transactions (Cambridge, England: 2003) 43(44):16780–16787. https://doi.org/10.1039/c4dt01597e

    Article  CAS  Google Scholar 

  9. Wang B, He X, Zhang Z, Zhao Y, Feng W (2013) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769

    Article  CAS  PubMed  Google Scholar 

  10. Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angewandte Chemie - International Edition 50(9):1980–1994

    Article  CAS  PubMed  Google Scholar 

  11. Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howard MD, Jay M, Dziubla TD, Lu X (2008) PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 4(2):133–148

    Article  CAS  Google Scholar 

  13. Yoo JW, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr Pharm Des 16(21):2298–2307

    Article  CAS  PubMed  Google Scholar 

  14. Pernia Leal M, Rivera-Fernandez S, Franco JM, Pozo D, de la Fuente JM, Garcia-Martin ML (2015) Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale 7(5):2050–2059. https://doi.org/10.1039/c4nr05781c

    Article  CAS  PubMed  Google Scholar 

  15. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  16. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  PubMed  Google Scholar 

  17. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  PubMed  Google Scholar 

  19. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46(3):622–631. https://doi.org/10.1021/ar300031y

    Article  CAS  PubMed  Google Scholar 

  20. García KP, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, Stephan H, Graham B (2014) Zwitterionic-coated "stealth" nanoparticles for biomedical applications: Recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529. https://doi.org/10.1002/smll.201303540

    Article  Google Scholar 

  21. Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7):6748–6755. https://doi.org/10.1021/nn5006478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang Y, Huo S, Mizuhara T, Das R, Lee YW, Hou S, Moyano DF, Duncan B, Liang XJ, Rotello VM (2015) The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 9(10):9986–9993. https://doi.org/10.1021/acsnano.5b03521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, Yesilbag Tonga G, Jackson LC, Rotello VM, Vachet RW (2016) Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10(5):5536–5542. https://doi.org/10.1021/acsnano.6b02086

    Article  CAS  PubMed  Google Scholar 

  24. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510. https://doi.org/10.1016/j.nantod.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pelaz B, Del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, De La Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9(7):6996–7008. https://doi.org/10.1021/acsnano.5b01326

    Article  CAS  PubMed  Google Scholar 

  27. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Part A):28–51. https://doi.org/10.1016/j.addr.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  28. Ye L, Zhang Y, Yang B, Zhou X, Li J, Qin Z, Dong D, Cui Y, Yao F (2016) Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Appl Mater Interfaces 8(7):4385–4398. https://doi.org/10.1021/acsami.5b10811

    Article  CAS  PubMed  Google Scholar 

  29. Huang P, Liu J, Wang W, Zhang Y, Zhao F, Kong D, Liu J, Dong A (2016) Zwitterionic nanoparticles constructed from bioreducible RAFT–ROP double head agent for shell shedding triggered intracellular drug delivery. Acta Biomater 40:263–272. https://doi.org/10.1016/j.actbio.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  30. Pernia Leal M, Caro C, Garcia-Martin ML (2017) Shedding light on zwitterionic magnetic nanoparticles: limitations for in vivo applications. Nanoscale 9(24):8176–8184. https://doi.org/10.1039/c7nr01607g

  31. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. https://doi.org/10.1021/ja0380852

    Article  CAS  PubMed  Google Scholar 

  32. Pernia Leal M, Munoz-Hernandez C, Berry CC, Garcia-Martin M (2015) In vivo pharmacokinetics of T2 contrast agents based on iron oxide nanoparticles: optimization of blood circulation times. RSC Adv 5(94):76883–76891. https://doi.org/10.1039/C5RA15680G

    Article  Google Scholar 

Download references

Acknowledgements

The MRI system used in this work has been funded by the Spanish Ministry of Science and Innovation (National Plan for Scientific Research, Development and Technological Innovation 2008-2011) and the European Regional Development Fund (PCT-420000-2010-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa García-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caro, C., Carmen Muñoz-Hernández, M., Leal, M.P., García-Martín, M.L. (2018). In Vivo Pharmacokinetics of Magnetic Nanoparticles. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics