Skip to main content

Synergistic Use of GPCR Modeling and SDM Experiments to Understand Ligand Binding

  • Protocol
  • First Online:
Book cover Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

There is a substantial amount of historical ligand binding data available from site-directed mutagenesis (SDM) studies of many different GPCR subtypes. This information was generated prior to the wave of GPCR crystal structure, in an effort to understand ligand binding with a view to drug discovery. Concerted efforts to determine the atomic structure of GPCRs have proven extremely successful and there are now more than 80 GPCR crystal structure in the PDB database, many of which have been obtained in the presence of receptor ligands and associated G proteins. These structural data enable the generation of computational model structures for all GPCRs, including those for which crystal structures do not yet exist. The power of these models in designing novel ligands, especially those with improved residence times, and for better understanding receptor function can be enhanced tremendously by combining them synergistically with historic SDM ligand binding data. Here, we describe a protocol by which historic SDM binding data and receptor models may be used together to identify novel key residues for mutagenesis studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376. https://doi.org/10.1016/S0165-6147(00)01678-3

    Article  CAS  PubMed  Google Scholar 

  2. Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552. https://doi.org/10.1124/pr.110.003285.1

    CAS  PubMed  Google Scholar 

  3. Franchetti P, Cappellacci L, Marchetti S et al (1998) 2′-C-methyl analogues of selective adenosine receptor agonists: synthesis and binding studies. J Med Chem 41:1708–1715

    Article  CAS  PubMed  Google Scholar 

  4. Heydenreich F, Vuckovic Z, Matkovic M, Veprintsev D (2015) Stabilization of G protein-coupled receptors by point mutations. Front Pharmacol 6:1–15. https://doi.org/10.3389/fphar.2015.00082

    Article  CAS  Google Scholar 

  5. Lebon G, Bennett K, Jazayeri A, Tate CG (2011) Thermostabilisation of an agonist-bound conformation of the human adenosine A2A receptor. J Mol Biol 409:298–310. https://doi.org/10.1016/j.jmb.2011.03.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen ATN, Baltos J-A, Thomas T et al (2016) Extracellular loop 2 of the adenosine A1 receptor has a key role in orthosteric ligand affinity and agonist efficacy. Mol Pharmacol 90:703–714. https://doi.org/10.1124/mol.116.105007

    Article  CAS  PubMed  Google Scholar 

  7. Olah ME, Stiles GL (2000) The role of receptor structure in determining adenosine receptor activity. Pharmacol Ther 85:55–75. https://doi.org/10.1016/S0163-7258(99)00051-0

    Article  CAS  PubMed  Google Scholar 

  8. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carpenter B, Nehmé R, Warne T et al (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107. https://doi.org/10.1038/nature18966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428. https://doi.org/10.1016/S1043-9471(05)80049-7

    Article  CAS  Google Scholar 

  11. Chemical Computing Group Inc. (2017) Molecular operating Environement (MOE)., Version 2015.10

    Google Scholar 

  12. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  13. Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  14. Schrodinger LLC (2015) The PyMOL molecular graphics system. Version 1.8

    Google Scholar 

  15. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  16. Munk C, Isberg V, Mordalski S et al (2016) GPCRdb: the G protein-coupled receptor database - an introduction. Br J Pharmacol 16:2195–2207. https://doi.org/10.1111/bph.13509

    Article  Google Scholar 

  17. Kim J, Wess J, van Rhee AM et al (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270:13987–13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Q, Rhee AM v, Kim J et al (1996) Hydrophilic side chains in the third and seventh transmembrane helical domains of human A2A adenosine receptors are required for ligand recognition. Mol Pharmacol 50:512–521

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (grant numbers BB/M009513/1 and BB/P004245/1) and by the EU H2020 CompBioMed project (http://www.compbiomed.eu/, 675451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Townsend-Nicholson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Potterton, A., Heifetz, A., Townsend-Nicholson, A. (2018). Synergistic Use of GPCR Modeling and SDM Experiments to Understand Ligand Binding. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics