Skip to main content

Enabling Molecular Technologies for Trait Improvement in Wheat

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

Wheat is the major staple food crop and a source of calories for humans worldwide. A steady increase in the wheat production is essential to meet the demands of an ever-increasing global population and to achieve food security. The large size and structurally intricate genome of polyploid wheat had hindered the genomic analysis. However, with the advent of new genomic technologies such as next generation sequencing has led to genome drafts for bread wheat and its progenitors and has paved the way to design new strategies for crop improvement. Here we provide an overview of the advancements made in wheat genomics together with the available “omics approaches” and bioinformatics resources developed for wheat research. Advances in genomic, transcriptomic, and metabolomic technologies are highlighted as options to circumvent existing bottlenecks in the phenotypic and genomic selection and gene transfer. The contemporary reverse genetics approaches, including the novel genome editing techniques to inform targeted manipulation of a single/multiple genes and strategies for generating marker-free transgenic wheat plants, emphasize potential to revolutionize wheat improvement shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uauy C, Distelfeld A, Fahima T et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genet 58:121–155

    CAS  PubMed  Google Scholar 

  3. Fleury D, Jefferies S, Kuchel H et al (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  4. Budak H, Hussain B, Khan Z et al (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borrill P, Adamski NM, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208:1–15

    Article  Google Scholar 

  6. Lai K (2016) WheatGenome.info: a resource for wheat genomics resource. In: Edwards D (ed) Plant bioinformatics. Springer, New York, pp 203–213

    Chapter  Google Scholar 

  7. Winfield MO, Lu C, Wilson ID et al (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  8. Krasileva KV, Vasquez-Gross HA, Howell T et al (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci 114(6):E913–E921. doi:10.1073/pnas.1619268114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chochois V, Vogel JP, Watt M (2012) Application of Brachypodium to the genetic improvement of wheat roots. J Exp Bot 63:3467–3474

    Article  CAS  PubMed  Google Scholar 

  10. Girin T, David LC, Chardin C et al (2014) Brachypodium: a promising hub between model species and cereals. J Exp Bot 65:5683–5696

    Article  CAS  PubMed  Google Scholar 

  11. Hollister JD (2015) Polyploidy: adaptation to the genomic environment. New Phytol 205:1034–1039

    Article  PubMed  Google Scholar 

  12. Liang J, Fu B, Tang W et al (2016) Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Genome 9(2). doi:10.3835/plantgenome2015.09.0084

  13. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  14. Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19:284–287

    Article  CAS  PubMed  Google Scholar 

  15. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  18. Osakabe Y, Osakabe K (2014) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    Article  PubMed  CAS  Google Scholar 

  19. Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 14:510–518

    Article  CAS  PubMed  Google Scholar 

  20. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  21. Shan Q, Wang Y, Li J et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  22. Upadhyay SK, Kumar J, Alok A et al (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12):2233–2238

    Article  CAS  Google Scholar 

  23. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. doi:10.1038/ncomms12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ricroch AE, Hénard-Damave MC (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36:675–690

    CAS  PubMed  Google Scholar 

  26. Poland J, Endelman J, Dawson J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  27. Mehanathan M, Prasad M (2014) An overview of wheat genome sequencing and its implications for crop improvement. J Genet 93:619–622

    Article  Google Scholar 

  28. Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  30. Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  31. Luo MC, Gu YQ, You FM et al (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci 110:7940–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  33. Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345(6194):1249721. doi:10.1126/science.1249721

    Article  PubMed  CAS  Google Scholar 

  34. Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90(5):1007–1013. doi:10.1111/tpj.13515

    Article  CAS  PubMed  Google Scholar 

  35. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Opanowicz M, Vain P, Draper J et al (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    Article  CAS  PubMed  Google Scholar 

  37. Mochida K, Uehara-Yamaguchi Y, Takahashi F et al (2013) Large-scale collection and analysis of full-length cDNAs from Brachypodium distachyon and integration with Pooideae sequence resources. PLoS One 8:e75265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hernandez P, Martis M, Dorado G et al (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  CAS  PubMed  Google Scholar 

  39. Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng P, Wang M, Feng K et al (2016) Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Sci Rep 6:32224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oyiga BC, Sharma RC, Baum M et al (2017) Allelic variations and differential expressions detected at QTL loci for salt stress tolerance in wheat. Plant Cell Environ. doi:10.1111/pce.12898

  42. Merchuk-Ovnat L, Barak V, Fahima T et al (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saidi MN, Mergby D, Brini F (2017) Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol Biochem 112:117–128

    Article  CAS  PubMed  Google Scholar 

  44. Kruse EB, Carle SW, Wen N et al (2017) Genomic regions associated with tolerance to freezing stress and snow mold in winter wheat. G3 (Bethesda) 7:775–780

    Article  Google Scholar 

  45. Sun C, Zhang F, Yan X et al (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the yellow and Huai Valley of China. Plant Biotechnol J. doi:10.1111/pbi.12690

  46. Gerard GS, Börner A, Lohwasser U et al (2017) Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their associations with plant height and heading date in wheat. Euphytica 213:27

    Article  CAS  Google Scholar 

  47. Yang ZJ, Peng ZS, Yang H (2015) Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.) Genet Mol Res 15:1–13

    Google Scholar 

  48. Powell JJ, Fitzgerald TL, Stiller J et al (2016) The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol J 15:533–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yu Y, Zhu D, Ma C et al (2016) Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J 4:92–106

    Article  Google Scholar 

  50. Zhang N, Wang S, Zhang S et al (2016) Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line. Gene 575:285–293

    Article  CAS  PubMed  Google Scholar 

  51. Wilkinson PA, Winfield MO, Barker GLA et al (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics 13:219

    Article  PubMed  PubMed Central  Google Scholar 

  52. Allen AM, Barker GL, Wilkinson P et al (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.) Plant Biotechnol J 11:279–295

    Article  CAS  PubMed  Google Scholar 

  53. Chen F, Zhu Z, Zhou X et al (2016) High-throughput sequencing reveals single nucleotide variants in longer-kernel bread wheat. Front Plant Sci 7:1193

    PubMed  PubMed Central  Google Scholar 

  54. Krasileva KV, Buffalo V, Bailey P et al (2013) Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol 14:R66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Puranik S, Sahu PP, Srivastava PS et al (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  56. Liu C, Mi H, Liu H et al (2017) Response to water deficit in glume of wheat: expression profiling by microarray analysis. Euphytica 213:26

    Article  CAS  Google Scholar 

  57. Pfeifer M, Kugler KG, Sandve SR et al (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345:1250091

    Article  PubMed  CAS  Google Scholar 

  58. Liu Z, Xin M, Qin J et al (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.) BMC Plant Biol 15:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Meng C, Quan TY, Li ZY et al (2017) Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat. BMC Genomics 18:24

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xiao J, Jin X, Jia X et al (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 14:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang H, Yang Y, Wang C et al (2014) Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 15:898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Erayman M, Turktas M, Akdogan G et al (2015) Transcriptome analysis of wheat inoculated with Fusarium graminearum. Front Plant Sci 6:867

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chetouhi C, Bonhomme L, Lasserre-Zuber P et al (2016) Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes. Funct Integr Genomics 16:183–201

    Article  CAS  PubMed  Google Scholar 

  64. Roessner U, Bowne J (2009) What is metabolomics all about? BioTechniques 46:363–365

    Article  CAS  PubMed  Google Scholar 

  65. Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  66. Fernie AR, Schauer N (2008) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  PubMed  CAS  Google Scholar 

  67. Khakimov B, Bak S, Engelsen SB (2014) High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J Cereal Sci 59:393–418

    Article  CAS  Google Scholar 

  68. Hong J, Yang L, Zhang D et al (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17:767

    Article  PubMed Central  CAS  Google Scholar 

  69. Zhen S, Dong K, Deng X et al (2016) Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.) J Sci Food Agric 96:3731–3740

    Article  CAS  PubMed  Google Scholar 

  70. Zhen S, Zhou J, Deng X et al (2016) Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.) J Cereal Sci 69:85–94

    Article  CAS  Google Scholar 

  71. Kong L, Xie Y, Hu L et al (2017) Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci Rep 7:43363

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lowe RG, Lord M, Rybak K et al (2008) A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genet Biol 45:1479–1486

    Article  CAS  PubMed  Google Scholar 

  73. Bowne JB, Erwin TA, Juttner J et al (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  CAS  PubMed  Google Scholar 

  74. Gunnaiah R, Kushalappa AC (2014) Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiol Biochem 83:40–50

    Article  CAS  PubMed  Google Scholar 

  75. Gunnaiah R, Kushalappa AC, Duggavathi R et al (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7:e40695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hill CB, Taylor JD, Edwards J et al (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  CAS  PubMed  Google Scholar 

  77. Francki MG, Hayton S, Gummer JPA et al (2016) Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain. Plant Biotechnol J 14:649–660

    Article  CAS  PubMed  Google Scholar 

  78. Dhokane D, Karre S, Kushalappa A, McCartney C et al (2016) Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS One 11:e0155851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  80. Garcia JA, Spencer D, Thieron H et al (2016) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15:367–378

    Article  CAS  Google Scholar 

  81. Fu D, Uauy C, Blechl A et al (2008) RNA interference for wheat functional gene analysis. Transgenic Res 16:689–701

    Article  CAS  Google Scholar 

  82. Lovegrove A, Wilkinson M, Freeman J et al (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sestili F, Sparla F, Botticella E et al (2016) The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Sci 252:230–238

    Article  CAS  PubMed  Google Scholar 

  84. Bhullar R, Nagarajan R, Bennypaul H et al (2014) Silencing of a metaphase I-specific gene results in a phenotype similar to that of the pairing homeologous 1 (Ph1) gene mutations. Proc Natl Acad Sci 111:14187–14192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gil-Humanes J, Wang Y, Liang Z et al (2017) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  Google Scholar 

  86. Uauy C, Paraiso F, Colasuonno P et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  CAS  PubMed  Google Scholar 

  88. Wang TL, Uauy C, Robson F et al (2012) TILLING in extremis. Plant Biotechnol J 10:761–772

    Article  CAS  PubMed  Google Scholar 

  89. Slade AJ, McGuire C, Loeffler D et al (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sestili F, Palombieri S, Botticella E et al (2015) TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Sci 233:127–133

    Article  CAS  PubMed  Google Scholar 

  91. Colasuonno P, Incerti O, Lozito ML et al (2016) DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet 17:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dong C, Dalton-Morgan J, Vincent K et al (2009) A modified TILLING method for wheat breeding. Plant Genome 2:39–47

    Article  CAS  Google Scholar 

  93. Simmonds J, Scott P, Brinton J et al (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet 129:1099–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schramm EC, Nelson SK, Steber CM (2012) Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica 188:35–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen A, Li C, Hu W et al (2014) Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci 111:10037–10044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet 8:e1003134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mishra A, Singh A, Sharma M et al (2016) Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biol 16:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Li W, Guo H, Wang Y et al (2017) Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Genes Genom 39:387–395

    Article  CAS  Google Scholar 

  99. Blechl A, Beecher B, Vensel W et al (2016) RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying a 1BL.1RS translocation. J Cereal Sci 68:172–180

    Article  CAS  Google Scholar 

  100. Chen W, Kastner C, Nowara D et al (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jorgensen RA, Cluster PD, English J et al (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  CAS  PubMed  Google Scholar 

  102. Sestili F, Janni M, Doherty A et al (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biol 10:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sestilia F, Sparla F, Botticella E et al (2016) The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Sci 252:230–238

    Article  CAS  Google Scholar 

  104. Gil-Humanes J, Pistón F, Barro F et al (2014) The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One 9:e91931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hong Y, Chen L, Du L et al (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genomics 14:341

    Article  CAS  PubMed  Google Scholar 

  106. Panwar V, McCallum B, Bakkeren G (2013) Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant J 73:521–532

    Article  CAS  PubMed  Google Scholar 

  107. Buhrow LM, Clark SM, Loewen MC (2016) Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes. Plant Methods 12:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Nowara D, Gay A, Lacomme C et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Panwar V, McCallum B, Bakkeren G (2013) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the barley stripe mosaic virus. Plant Mol Biol 81:595–608

    Article  CAS  PubMed  Google Scholar 

  110. Cheng W, Song XS, Li HP et al (2015) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol J 13:1335–1345

    Article  CAS  PubMed  Google Scholar 

  111. Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shiva PN, Bhojaraja R, Shivbachan SK et al (2009) Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep 28:1655

    Article  CAS  Google Scholar 

  113. Tuteja N, Verma S, Sahoo RK et al (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  114. Li Z, Xing A, Moon BP et al (2007) A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 65:329–341

    Article  CAS  PubMed  Google Scholar 

  115. Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. Plant Biotechnol J 9:713–721

    Article  CAS  PubMed  Google Scholar 

  116. Woo HJ, Qin Y, Park SY et al (2015) Development of selectable marker-free transgenic rice plants with enhanced seed tocopherol content through FLP/FRT-mediated spontaneous auto-excision. PLoS One 10:e0132667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Scaramelli L, Balestrazzi A, Bonadei M et al (2009) Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Plant Cell Rep 28:197–211

    Article  CAS  PubMed  Google Scholar 

  118. Khan RS, Nakamura I, Mii M (2011) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053

    Article  CAS  PubMed  Google Scholar 

  119. Gao X, Zhou J, Li J et al (2015) Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy. Plant Physiol 167:11–24

    Article  CAS  PubMed  Google Scholar 

  120. Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  CAS  PubMed  Google Scholar 

  121. McCormac AC, Fowler MR, Chen DF et al (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155

    Article  CAS  PubMed  Google Scholar 

  122. Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  123. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575

    Article  CAS  PubMed  Google Scholar 

  124. Darbani B, Eimanifar A, Stewart CN et al (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  125. Yau YY, Stewart CN (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mészáros E, Éva C, Kiss T et al (2015) Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible cre/lox system. Plant Mol Biol Report 33:1221–1231

    Article  CAS  Google Scholar 

  127. Ishida Y, Tsunashima M, Hiei Y et al (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. In: Wang K (ed) Agrobacterium protocols. Springer, New York, pp 189–198

    Google Scholar 

  128. Richardson T, Thistleton J, Higgins TJ et al (2014) Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue Organ Cult 119:647–659

    Article  CAS  Google Scholar 

  129. Wang K, Liu H, Du L et al (2016) Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15(5):614–623. doi:10.1111/pbi.12660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang GP, Yu XD, Sun YW et al (2016) Generation of marker-and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation. Front Plant Sci 7:1324

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the DIISR Australia–India collaborative project (project no BF040059) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bhalla, P.L., Sharma, A., Singh, M.B. (2017). Enabling Molecular Technologies for Trait Improvement in Wheat. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics