Skip to main content

Growth-Coupled Carotenoids Production Using Adaptive Laboratory Evolution

  • Protocol
Book cover Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Adaptive laboratory evolution is a powerful technique for strain development. However, the target phenotypes using this strategy have been limited by the required coupling of the phenotype-of-interest with fitness or survival, and thus adaptive evolution is generally not used to improve product formation. If the desired product confers a benefit to the host, then adaptive evolution can be an effective approach to improve host productivity. In this book chapter, we describe an effective adaptive laboratory evolution strategy for improving product formation of carotenoids, a class of compounds with antioxidant potential, in the yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33. doi:10.1016/j.ymben.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  2. Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10):2616–2623. doi:10.1002/bit.24938

    Article  CAS  PubMed  Google Scholar 

  3. Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14(5):579–590. doi:10.1016/j.ymben.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35(7):668–681. doi:10.1002/bit.260350704

    Article  CAS  PubMed  Google Scholar 

  5. Rozkov A, Avignone-Rossa CA, Ertl PF, Jones P, O’Kennedy RD, Smith JJ, Dale JW, Bushell ME (2004) Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol Bioeng 88(7):909–915. doi:10.1002/bit.20327

    Article  CAS  PubMed  Google Scholar 

  6. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342–4350. doi:10.1128/AEM.02759-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Sun Z, Li J, Zhang Y (2013) Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett 345(2):94–101. doi:10.1111/1574-6968.12187

    Article  CAS  PubMed  Google Scholar 

  8. Xie W, Lv X, Ye L, Zhou P, Yu H (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. doi:10.1016/j.ymben.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen J (2009) Systems biology of lipid metabolism: from yeast to human. FEBS Lett 583(24):3905–3913. doi:10.1016/j.febslet.2009.10.054

    Article  CAS  PubMed  Google Scholar 

  10. Xu X, Jin W, Jiang L, Xu Q, Li S, Zhang Z, Huang H (2016) A high-throughput screening method for identifying lycopene-overproducing E. coli strain based on an antioxidant capacity assay. Biochem Eng J 112:277–284. doi:10.1016/j.bej.2016.04.032

    Article  CAS  Google Scholar 

  11. Wang TY, Tsai YH, Yu IZ, Chang TS (2016) Improving 3′-hydroxygenistein production in recombinant Pichia pastoris using periodic hydrogen peroxide-shocking strategy. J Microbiol Biotechnol 26(3):498–502. doi:10.4014/jmb.1509.09013

    Article  CAS  PubMed  Google Scholar 

  12. Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40(12):1499–1504. doi:10.1038/ng.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14(10):943–951. doi:10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  14. Winkler J, Reyes LH, Kao KC (2013) Adaptive laboratory evolution for strain engineering. Methods Mol Biol 985:211–222. doi:10.1007/978-1-62703-299-5_11

    Article  CAS  PubMed  Google Scholar 

  15. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346

    Article  CAS  PubMed  Google Scholar 

  16. Switala J, Loewen PC (2002) Diversity of properties among catalases. Arch Biochem Biophys 401(2):145–154. doi:10.1016/S0003-9861(02)00049-8

    Article  CAS  PubMed  Google Scholar 

  17. Martins D, English AM (2014) Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol 2:308–313. doi:10.1016/j.redox.2013.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winkler JD, Garcia C, Olson M, Callaway E, Kao KC (2014) Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 80(12):3729–3740. doi:10.1128/AEM.00499-14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breithaupt DE (2004) Simultaneous HPLC determination of carotenoids used as food coloring additives: applicability of accelerated solvent extraction. Food Chem 86(3):449–456. doi:10.1016/j.foodchem.2003.10.027

    Article  CAS  Google Scholar 

  20. Kaiser P, Surmann P, Vallentin G, Fuhrmann H (2007) A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Methods 70(1):142–149. doi:10.1016/j.mimet.2007.04.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy C. Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reyes, L.H., Kao, K.C. (2018). Growth-Coupled Carotenoids Production Using Adaptive Laboratory Evolution. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics