Skip to main content

Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS

  • Protocol
  • First Online:
Book cover Selenoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

Selenoprotein K (SELENOK) and Selenoprotein S (SELENOS) are the members of the endoplasmic-reticulum-associated degradation (ERAD) complex, which is responsible for translocating misfolded proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Besides its involvement in the ERAD, SELENOK was shown to bind and stabilize the palmitoyl transferase DHHC6, and thus contributes to palmitoylation. SELENOK and SELENOS reside in the ER membrane by the way of a single transmembrane helix. Both contain an intrinsically disordered region with a selenocysteine (Sec) located one or two residues away from the C-terminus. Here, we describe the preparation of the Sec-containing forms of SELENOS and SELENOK. SELENOK, which contains no native cysteines, was prepared in an E. coli cysteine auxotroph strain by exploiting the codon and the insertion machinery of Cys for the incorporation of Sec. In contrast, the preparation of SELENOS, which contains functionally important cysteine residues, relied on E. coli’s native Sec incorporation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Rozovsky S (2015) Membrane-bound selenoproteins. Antioxid Redox Signal 23(10):795–813. doi:10.1089/ars.2015.6388

    Article  CAS  PubMed  Google Scholar 

  2. Gladyshev VN, Arner ES, Berry MJ, Brigelius-Flohe R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohe L, Green FR, Guigo R, Handy DE, Hatfield DL, Hesketh J, Hoffmann PR, Holmgren A, Hondal RJ, Howard MT, Huang K, Kim HY, Kim IY, Kohrle J, Krol A, Kryukov GV, Lee BJ, Lee BC, Lei XG, Liu Q, Lescure A, Lobanov AV, Loscalzo J, Maiorino M, Mariotti M, Sandeep Prabhu K, Rayman MP, Rozovsky S, Salinas G, Schmidt EE, Schomburg L, Schweizer U, Simonovic M, Sunde RA, Tsuji PA, Tweedie S, Ursini F, Whanger PD, Zhang Y (2016) Selenoprotein gene nomenclature. J Biol Chem 291(46):24036–24040. doi:10.1074/jbc.M116.756155

    Article  CAS  PubMed  Google Scholar 

  3. Lilley BN, Ploegh HL (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A 102(40):14296–14301. doi:10.1073/pnas.0505014102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shchedrina VA, Novoselov SV, Malinouski MY, Gladyshev VN (2007) Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif. Proc Natl Acad Sci U S A 104(35):13919–13924. doi:10.1073/pnas.0703448104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee JH, Kwon JH, Jeon YH, Ko KY, Lee SR, Kim IY (2014) Pro178 and Pro183 of selenoprotein S are essential residues for interaction with p97(VCP) during endoplasmic reticulum-associated degradation. J Biol Chem 289(20):13758–13768. doi:10.1074/jbc.M113.534529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY (2015) Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J Biol Chem 290(50):29941–29952. doi:10.1074/jbc.M115.680215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye YH, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847. doi:10.1038/nature02656

    Article  CAS  PubMed  Google Scholar 

  8. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840. doi:10.1038/nature02592

    Article  CAS  PubMed  Google Scholar 

  9. Turanov AA, Shchedrina VA, Everley RA, Lobanov AV, Yim SH, Marino SM, Gygi SP, Hatfield DL, Gladyshev VN (2014) Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem J 462(3):555–565. doi:10.1042/bj20140076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Zhang Z, Rozovsky S (2014) Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential. FEBS Lett 588(18):3311–3321. doi:10.1016/j.febslet.2014.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, Mercier F, Hoffmann PR (2014) Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci U S A 111(46):16478–16483. doi:10.1073/pnas.1417176111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fredericks GJ, Hoffmann PR (2015) Selenoprotein K and protein palmitoylation. Antioxid Redox Signal 23(10):854–862. doi:10.1089/ars.2015.6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardy D, Bill RM, Jawhari A, Rothnie AJ (2016) Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans 44(3):838–844. doi:10.1042/bst20160049

    Article  CAS  PubMed  Google Scholar 

  14. Lyons JA, Shahsavar A, Paulsen PA, Pedersen BP, Nissen P (2016) Expression strategies for structural studies of eukaryotic membrane proteins. Curr Opin Struct Biol 38:137–144. doi:10.1016/j.sbi.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  15. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14(1):93–105. doi:10.1038/ncb2383

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Srinivasan P, Pham DN, Rozovsky S (2012) Expression and purification of the membrane enzyme selenoprotein K. Protein Expr Purif 86(1):27–34. doi:10.1016/j.pep.2012.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Li F, Rozovsky S (2013) The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry 52(18):3051–3061. doi:10.1021/bi4001358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Rozovsky S (2013) Contribution of selenocysteine to the peroxidase activity of selenoprotein S. Biochemistry 52(33):5514–5516. doi:10.1021/bi400741c

    Article  CAS  PubMed  Google Scholar 

  19. Muller S, Senn H, Gsell B, Vetter W, Baron C, Bock A (1994) The formation of diselenide bridges in proteins by incorporation of selenocysteine residues - biosynthesis and characterization of (Se)(2)-thioredoxin. Biochemistry 33(11):3404–3412. doi:10.1021/bi00177a034

    Article  CAS  PubMed  Google Scholar 

  20. Strub MP, Hoh F, Sanchez JF, Strub JM, Bock A, Aumelas A, Dumas C (2003) Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 11(11):1359–1367. doi:10.1016/j.str.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Yoshizawa S, Böck A (2009) The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta 1790(11):1404–1414. doi:10.1016/j.bbagen.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  22. Arnér ESJ, Sarioglu H, Lottspeich F, Holmgren A, Bock A (1999) High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J Mol Biol 292(5):1003–1016. doi:10.1006/jmbi.1999.3085

    Article  PubMed  Google Scholar 

  23. Rengby O, Johansson L, Carlson LA, Serini E, Vlamis-Gardikas A, Karsnas P, Arner ESJ (2004) Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis. Appl Environ Microbiol 70(9):5159–5167. doi:10.1128/AEM.70.9.5159-5167.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41(1):207–234. doi:10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  25. Cheng Q, Johansson L, Thorell JO, Fredriksson A, Samen E, Stone-Elander S, Arner ESJ (2006) Selenolthiol and dithiol C-terminal tetrapeptide motifs for one-step purification and labeling of recombinant proteins produced in E. coli. ChemBioChem 7(12):1976–1981. doi:10.1002/cbic.200600326

    Article  CAS  PubMed  Google Scholar 

  26. Blommel PG, Fox BG (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif 55(1):53–68. doi:10.1016/j.pep.2007.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng Q, Stone-Elander S, Arner ESJ (2006) Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with C-11. Nat Protoc 1(2):604–613. doi:10.1038/nprot.2006.87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. E. S. J. Arner from the Karolinska Institutet for the generous donation of the pSUABC plasmid and Dr. Marie-Paule Strub at the NIH laboratory of molecular biophysics for the donation of BL21(DE3)cys cells. The Delaware COBRE program supported this research with grants from the National Institute of General Medical Sciences under awards P30 GM110758-02 and P20 GM104316. We acknowledge the use of instrumentation made accessible through the National Science Foundation under Grant No. CHE-1337449. This work was primarily supported by the National Science Foundation under Grant No. MCB-1054447 “CAREER: Reactivity of Selenoproteins” and Grant No. MCB-1616178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Rozovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, Z., Liu, J., Rozovsky, S. (2018). Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS. In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics