Skip to main content

Comparative Genomics as a Foundation for Evo-Devo Studies in Birds

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    CAS  PubMed  Google Scholar 

  2. Nagai H, Mak S-S, Weng W et al (2011) Embryonic development of the emu, Dromaius novaehollandiae. Dev Dyn 240:162–175

    Article  PubMed  Google Scholar 

  3. Padgett CS, Ivey WD (1960) The normal embryology of the coturnix quail. Anat Rec 137:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Murray JR, Varian-Ramos CW, Welch ZS et al (2013) Embryological staging of the Zebra Finch, Taeniopygia guttata. J Morphol 274:1090–1110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hillier LW, Miller W, Birney E et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  6. Zhang G, Li C, Li Q et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang G (2015) Bird sequencing project takes off. Nature 522:34

    Article  CAS  PubMed  Google Scholar 

  9. Bonneaud C, Burnside J, Edwards SV (2008) High-speed developments in avian genomics. BioScience 58:587–595

    Article  Google Scholar 

  10. Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518

    Article  CAS  PubMed  Google Scholar 

  11. Bradnam KR, Fass JN, Alexandrov A et al (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goodwin S, Gurtowski J, Ethe-Sayers S et al (2015) Oxford nanopore sequencing and de novo assembly of a eukaryotic genome. Genome Res 25(11):1750–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics, Proteomics Bioinformatics 13:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gordon D, Huddleston J, Chaisson MJ et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mostovoy Y, Levy-Sakin M, Lam J et al (2016) A hybrid approach for de novo human genome sequence assembly and phasing. Nat Methods 13:12–17

    Article  Google Scholar 

  17. Weisenfeld NI, Kumar V, Shah P et al (2017) Direct determination of diploid genome sequences. Genome Res 27(5):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siepel A, Bejerano G, Pedersen JS et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Visel A, Prabhakar S, Akiyama JA et al (2008) Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet 40:158–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowe CB, Kellis M, Siepel A et al (2011) Three periods of regulatory innovation during vertebrate evolution. Science (New York, NY) 333:1019–1024

    Article  CAS  Google Scholar 

  21. Lowe CB, Clarke JA, Baker AJ et al (2015) Feather development genes and associated regulatory innovation predate the origin of dinosauria. Mol Biol Evol 32:23–28

    Google Scholar 

  22. Marcovitz A, Jia R, Bejerano G (2016) “Reverse genomics” predicts function of human conserved noncoding elements. Mol Biol Evol 33:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hiller M, Schaar BT, Bejerano G (2012) Hundreds of conserved non-coding genomic regions are independently lost in mammals. Nucleic Acids Res 40:11463–11476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seki R, Li C, Fang Q, Hayashi S, Egawa S, Hu J, Xu L, Pan H, Kondo M, Sato T, Matsubara H, Kamiyama N, Kitajima K, Saito D, Liu Y, Thomas M, Gilbert P, Zhou Q, Xu X, Shiroishi T, Irie N, Tamura K, Zhang G (2017) Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat Commun 8:14229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Booker BM, Friedrich T, Mason MK et al (2016) Bat accelerated regions identify a bat forelimb specific enhancer in the HoxD Locus. PLoS Genet 12(3):e1005738

    Google Scholar 

  26. Eckalbar WL, Schlebusch SA, Mason MK et al (2016) Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet 48:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Domyan ET, Kronenberg Z, Infante CR et al (2016) Molecular shifts in limb identity underlie development of feathered feet in two domestic avian species. elife 5:1–21

    Article  Google Scholar 

  28. Adachi N, Robinson M, Goolsbee A et al (2016) Regulatory evolution of Tbx5 and the origin of paired appendages. Proc Natl Acad Sci 113:10115–10120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Ray Scott J, Wilkens-Diehr N (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott V. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Grayson, P., Sin, S.Y.W., Sackton, T.B., Edwards, S.V. (2017). Comparative Genomics as a Foundation for Evo-Devo Studies in Birds. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics