Skip to main content

Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines

  • Protocol
  • First Online:
Site-Specific Recombinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1642))

Abstract

The retina is a thin neural tissue sitting on the backside of the eye, composed of light-sensing cells, interneurons, and output ganglion neurons. The latter send electrical signals to higher visual centers in the brain. Transgenic mouse lines are becoming one of the most valuable mammalian animal models for the study of visual signal processing within the retina. Especially, the generation of Cre recombinase transgenic mouse lines provides a powerful tool for genetic manipulation. A key step for the utilization of transgenic lines is the characterization of their transgene expression patterns in the retina. Here we describe a standard protocol for characterizing the expression pattern of the Cre recombinase or fluorescent proteins in the retina with an immunohistochemical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7(5):483. doi:10.1038/nn0504-483

    Article  CAS  PubMed  Google Scholar 

  2. Tang JC, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL (2015) Cell type-specific manipulation with GFP-dependent Cre recombinase. Nat Neurosci 18(9):1334–1341. doi:10.1038/nn.4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le YZ, Ash JD, Al-Ubaidi MR, Chen Y, Ma JX, Anderson RE (2004) Targeted expression of Cre recombinase to cone photoreceptors in transgenic mice. Mol Vis 10:1011–1018

    CAS  PubMed  Google Scholar 

  4. Ivanova E, Hwang GS, Pan ZH (2010) Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience 165(1):233–243. doi:10.1016/j.neuroscience.2009.10.021

    Article  CAS  PubMed  Google Scholar 

  5. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  6. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28

    Article  CAS  PubMed  Google Scholar 

  7. Madisen L, Zwingman TA, Sunkin SM, SW O, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. doi:10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  8. Jackson (2016) Jackson lab. https://www.jax.org/jax-mice-and-services. Accessed 7 Apr 2016

  9. GENSAT (2009) http://www.gensat.org/retina.jsp

  10. Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, Roska B (2009) Genetic address book for retinal cell types. Nat Neurosci 12(9):1197–1204. doi:10.1038/nn.2370

    Article  CAS  PubMed  Google Scholar 

  11. Akimoto M, Filippova E, Gage PJ, Zhu X, Craft CM, Swaroop A (2004) Transgenic mice expressing Cre-recombinase specifically in M- or S-cone photoreceptors. Invest Ophthalmol Vis Sci 45(1):42–47

    Article  PubMed  Google Scholar 

  12. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. doi:10.1038/nature02033

    Article  CAS  PubMed  Google Scholar 

  13. Zhang XM, Chen BY, Ng AH, Tanner JA, Tay D, So KF, Rachel RA, Copeland NG, Jenkins NA, Huang JD (2005) Transgenic mice expressing Cre-recombinase specifically in retinal rod bipolar neurons. Invest Ophthalmol Vis Sci 46(10):3515–3520. doi:10.1167/iovs.04-1201

    Article  PubMed  Google Scholar 

  14. Lu Q, Ivanova E, Ganjawala TH, Pan ZH (2013) Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 19:1310–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469(1):70–82. doi:10.1002/cne.10985

    Article  PubMed  Google Scholar 

  16. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK (2011) Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 13(2):195–204. doi:10.1016/j.cmet.2011.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M (2006) C-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci 26(51):13287–13296. doi:10.1523/JNEUROSCI.3795-06.2006

    Article  CAS  PubMed  Google Scholar 

  18. Grimes WN, Seal RP, Oesch N, Edwards RH, Diamond JS (2011) Genetic targeting and physiological features of VGLUT3+ amacrine cells. Vis Neurosci 28(5):381–392. doi:10.1017/S0952523811000290

    Article  PubMed  PubMed Central  Google Scholar 

  19. Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1):3–9

    Article  CAS  PubMed  Google Scholar 

  20. Heimer-McGinn V, Young P (2011) Efficient inducible pan-neuronal cre-mediated recombination in SLICK-H transgenic mice. Genesis 49(12):942–949. doi:10.1002/dvg.20777

    Article  CAS  PubMed  Google Scholar 

  21. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451. doi:10.1371/journal.pone.0002451

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218. doi:10.1126/science.1071795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222(2):296–306. doi:10.1006/dbio.2000.9732

    Article  CAS  PubMed  Google Scholar 

  24. Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12(1):11–24

    Article  CAS  PubMed  Google Scholar 

  25. Frugier T, Tiziano FD, Cifuentes-Diaz C, Miniou P, Roblot N, Dierich A, Le Meur M, Melki J (2000) Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 9(5):849–858

    Article  CAS  PubMed  Google Scholar 

  26. Ueki Y, Ash JD, Zhu M, Zheng L, Le YZ (2009) Expression of Cre recombinase in retinal Muller cells. Vis Res 49(6):615–621. doi:10.1016/j.visres.2009.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Lu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lu, Q., Pan, ZH. (2017). Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines. In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics