Skip to main content

Ion Channels as Reporters of Membrane Receptor Function: Automated Analysis in Xenopus Oocytes

  • Protocol
  • First Online:
Membrane Protein Structure and Function Characterization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1635))

Abstract

G-protein-coupled receptors (GPCR) are the most widely used system of communication used by cells. They sense external signals and translate them into intracellular signals. The information is carried mechanically across the cell membrane, without perturbing its integrity. Agonist binding on the extracellular side causes a change in receptor conformation which propagates to the intracellular side and causes release of activated G-proteins, the first messengers of a variety of signaling cascades.

Permitting access to powerful electrophysiological techniques, ion channels can be employed to monitor precisely the most proximal steps of GPCR signaling, receptor conformational changes, and G-protein release. The former is achieved by physical attachment of a potassium channel to the GPCR to create an Ion-Channel Coupled Receptor (ICCR). The latter is based on the use of G-protein-regulated potassium channels (GIRK). We describe here how these two systems may be used in the Xenopus oocyte heterologous system with a robotic system for increased throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikeda K, Yoshii M, Sora I, Kobayashi T (2003) Opioid receptor coupling to GIRK channels. In vitro studies using a Xenopus oocyte expression system and in vivo studies on weaver mutant mice. Methods Mol Med 84:53–64

    CAS  PubMed  Google Scholar 

  2. Luetje CW, Nichols AS, Castro A, Sherman BL (2013) Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes. Methods Mol Biol 1003:187–202

    Article  CAS  PubMed  Google Scholar 

  3. Picciocchi A, Siauciunaitee-Gaubard L, Petit-Hartlein I et al (2014) C-terminal engineering of CXCL12 and CCL5 chemokines: Functional characterization by electrophysiological recordings. PLoS One 9:e87394

    Article  PubMed  PubMed Central  Google Scholar 

  4. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Whorton MR, MacKinnon R (2014) Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. eLife 3:e03671

    PubMed  PubMed Central  Google Scholar 

  6. Sui JL, Chan K, Langan MN, Vivaudou M, Logothetis DE (1999) G protein gated potassium channels. Adv Second Messenger Phosphoprotein Res 33:179–201

    Article  CAS  PubMed  Google Scholar 

  7. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    Article  CAS  PubMed  Google Scholar 

  8. Chan KW, Sui JL, Vivaudou M, Logothetis DE (1996) Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A 93:14193–14198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan KW, Sui JL, Vivaudou M, Logothetis DE (1997) Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. J Biol Chem 272:6548–6555

    Article  CAS  PubMed  Google Scholar 

  10. Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE (1997) Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem 272:31553–31560

    Article  CAS  PubMed  Google Scholar 

  11. Moreau CJ, Dupuis JP, Revilloud J, Arumugam K, Vivaudou M (2008) Coupling ion channels to receptors for biomolecule sensing. Nat Nanotechnol 3:620–625

    Article  CAS  PubMed  Google Scholar 

  12. Caro LN, Moreau CJ, Revilloud J, Vivaudou M (2011) ß2-Adrenergic ion-channel coupled receptors as conformational motion detectors. PLoS One 6:e18226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caro LN, Moreau CJ, Estrada-Mondragón A, Ernst OP, Vivaudou M (2012) Engineering of an artificial light-modulated potassium channel. PLoS One 7:e43766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niescierowicz K, Caro L, Cherezov V, Vivaudou M, Moreau CJ (2014) Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter. Structure 22:149–155

    Article  CAS  PubMed  Google Scholar 

  15. Moreau CJ, Niescierowicz K, Caro LN, Revilloud J, Vivaudou M (2015) Ion channel reporter for monitoring the activity of engineered GPCRs. Methods Enzymol 556:425–454

    Article  CAS  PubMed  Google Scholar 

  16. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  CAS  PubMed  Google Scholar 

  17. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22:537–548

    Article  CAS  PubMed  Google Scholar 

  18. Moreau C, Prost AL, Dérand R, Vivaudou M (2005) SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38:951–963

    Article  CAS  PubMed  Google Scholar 

  19. Chan KW, Zhang H, Logothetis DE (2003) N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 22:3833–3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dascal N (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem 22:317–387

    Article  CAS  PubMed  Google Scholar 

  21. Yang K, Fang K, Fromondi L, Chan KW (2005) Low temperature completely rescues the function of two misfolded K ATP channel disease-mutants. FEBS Lett 579:4113–4118

    Article  CAS  PubMed  Google Scholar 

  22. Guan B, Chen X, Zhang H (2013) Two-electrode voltage clamp. Methods Mol Biol 998:79–89

    Article  CAS  PubMed  Google Scholar 

  23. Leisgen C, Kuester M, Methfessel C (2007) The roboocyte: automated electrophysiology based on Xenopus oocytes. Methods Mol Biol 403:87–109

    Article  CAS  PubMed  Google Scholar 

  24. Lim NF, Dascal N, Labarca C, Davidson N, Lester HA (1995) A G protein-gated K channel is activated via beta 2-adrenergic receptors and G beta gamma subunits in Xenopus oocytes. J Gen Physiol 105:421–439

    Article  CAS  PubMed  Google Scholar 

  25. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  CAS  PubMed  Google Scholar 

  26. Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol 408:313–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forestier C, Vivaudou M (1993) Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle. J Membr Biol 132:87–94

    Article  CAS  PubMed  Google Scholar 

  28. Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  CAS  PubMed  Google Scholar 

  29. Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. BioTechniques 32:536–8, 540

    CAS  PubMed  Google Scholar 

  30. Aranda PS, LaJoie DM, Jorcyk CL (2012) Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by CNRS (Centre National de la Recherche Scientifique), CEA (Commissariat à l’Energie Atomique et aux énergies alternatives), Université Grenoble Alpes, and by grants from the Agence Nationale de la Recherche (VenomPicoScreen project, grant ANR-11-RPIB-022-04) and from the National Institutes of Health (NIH Grant Nr. 5R01EB007047-06). Our laboratory is a member of the French National Laboratory of Excellence “Ion Channel Science and Therapeutics” (LabEX ICST) funded by a network grant from ANR (ANR-11-LABX-0015-01). G.C.M.R. and Z.T. are recipients of doctoral fellowships from LabEX ICST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Vivaudou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vivaudou, M., Todorov, Z., Reyes-Mejia, G.C., Moreau, C. (2017). Ion Channels as Reporters of Membrane Receptor Function: Automated Analysis in Xenopus Oocytes. In: Lacapere, JJ. (eds) Membrane Protein Structure and Function Characterization. Methods in Molecular Biology, vol 1635. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7151-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7151-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7149-7

  • Online ISBN: 978-1-4939-7151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics