Skip to main content

Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis

  • Protocol
  • First Online:
Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient’s own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. doi:10.1152/ajplung.00313.2007

    Article  CAS  PubMed  Google Scholar 

  2. Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med 17(5):355–361. doi:10.1097/MCP.0b013e328349ac2b

    Article  CAS  PubMed  Google Scholar 

  3. Sokocevic D, Bonenfant NR, Wagner DE et al (2013) The effect of age and emphysematous and fibrotic injury on the re-cellularization of de-cellularized lungs. Biomaterials 34(13):3256–3269. doi:10.1016/j.biomaterials.2013.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schiller HB, Fernandez IE, Burgstaller G et al (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 11(7):819. doi:10.15252/msb.20156123

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun H, Zhu Y, Pan H et al (2016) Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic sclerodermatous lung microenvironment and in bleomycin-induced pulmonary fibrosis. Arthritis Rheumatol 68(5):1251–1261. doi:10.1002/art.39575

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Price AP, England KA, Matson AM et al (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8):2581–2591. doi:10.1089/ten.TEA.2009.0659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen TH, Calle EA, Zhao L et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. doi:10.1126/science.1189345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Booth AJ, Hadley R, Cornett AM et al (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876. doi:10.1164/rccm.201204-0754OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilpin SE, Guyette JP, Ren X et al (2013) Up-scaling decellularization and whole organ culture for human lung regeneration. J Heart Lung Transpl 32(4):S69–S70. doi:10.1016/j.healun.2013.01.172

    Article  Google Scholar 

  10. Wagner DE, Bonenfant NR, Parsons CS et al (2014) Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35(10):3281–3297. doi:10.1016/j.biomaterials.2013.12.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilpin SE, Guyette JP, Gonzalez G et al (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308. doi:10.1016/j.healun.2013.10.030

    Article  PubMed  Google Scholar 

  12. Wagner DE, Bonenfant NR, Sokocevic D et al (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35(9):2664–2679. doi:10.1016/j.biomaterials.2013.11.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balestrini JL, Gard AL, Liu A et al (2015) Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr Biol (Camb) 7(12):1598–1610. doi:10.1039/c5ib00063g

    Article  CAS  Google Scholar 

  14. Platz J, Bonenfant NR, Uhl FE et al (2016) Comparative study to the use of decellularized alpha-Gal KO pig lungs for xenogeneic lung transplantation. Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2016.0109

    PubMed  PubMed Central  Google Scholar 

  15. Godin LM, Sandri BJ, Wagner DE et al (2016) Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS One 11(3):e0150966. doi:10.1371/journal.pone.0150966

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parker MW, Rossi D, Peterson M et al (2014) Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 124(4):1622–1635. doi:10.1172/jci71386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou Y, Peng H, Sun H et al (2014) Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci Transl Med 6(240):240ra276. doi:10.1126/scitranslmed.3007096

    Article  Google Scholar 

  18. Wallis JM, Borg ZD, Daly AB et al (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 18(6):420–432. doi:10.1089/ten.TEC.2011.0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daly AB, Wallis JM, Borg ZD et al (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1–2):1–16. doi:10.1089/ten.TEA.2011.0301

    Article  CAS  PubMed  Google Scholar 

  20. Bonvillain RW, Danchuk S, Sullivan DE et al (2012) A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 18(23–24):2437–2452. doi:10.1089/ten.TEA.2011.0594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lluri G, Langlois GD, McClellan B et al (2006) Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a beta1 integrin-mediated mechanism. J Neurobiol 66(12):1365–1377. doi:10.1002/neu.20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zvarova B, Uhl FE, Uriarte JJ et al (2016) Residual detergent detection method for nondestructive cytocompatibility evaluation of decellularized whole lung scaffolds. Tissue Eng Part C Methods 22(5):418–428. doi:10.1089/ten.TEC.2015.0439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reed W, Noga SJ, Gee AP et al (2009) Production Assistance for Cellular Therapies (PACT): four-year experience from the United States National Heart, Lung, and Blood Institute (NHLBI) contract research program in cell and tissue therapies. Transfusion 49(4):786–796. doi:10.1111/j.1537-2995.2008.02027.x

    Article  PubMed  Google Scholar 

  24. Yankaskas JR, Haizlip JE, Conrad M et al (1993) Papilloma virus immortalized tracheal epithelial cells retain a well-differentiated phenotype. Am J Phys 264(5 Pt 1):C1219–C1230

    CAS  Google Scholar 

  25. Bonenfant NR, Sokocevic D, Wagner DE et al (2013) The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials 34(13):3231–3245. doi:10.1016/j.biomaterials.2013.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melo E, Cardenes N, Garreta E et al (2014) Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. J Mech Behav Biomed Mater 37:186–195. doi:10.1016/j.jmbbm.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  27. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40(3):362–382. doi:10.1016/j.biocel.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez IE, Amarie OV, Mutze K et al (2016) Systematic phenotyping and correlation of biomarkers with lung function and histology in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 310(10):L919–L927. doi:10.1152/ajplung.00183.2015

    Article  PubMed  Google Scholar 

  29. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. doi:10.1016/j.biomaterials.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffin WC (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:249–256

    Google Scholar 

  31. Hjelmeland LM (1980) A nondenaturing zwitterionic detergent for membrane biochemistry: design and synthesis. Proc Natl Acad Sci U S A 77(11):6368–6370. doi:10.1073/pnas.77.11.6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren X, Moser PT, Gilpin SE et al (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33(10):1097–1102. doi:10.1038/nbt.3354

    Article  CAS  PubMed  Google Scholar 

  33. Calle EA, Mendez JJ, Ghaedi M et al (2015) Fate of distal lung epithelium cultured in a decellularized lung extracellular matrix. Tissue Eng Part A 21(11–12):1916–1928. doi:10.1089/ten.TEA.2014.0511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghaedi M, Calle EA, Mendez JJ et al (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123(11):4950–4962. doi:10.1172/JCI68793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilpin SE, Ren X, Okamoto T et al (2014) Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann Thorac Surg 98(5):1721–1729. doi:10.1016/j.athoracsur.2014.05.080

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun H, Calle E, Chen X et al (2014) Fibroblast engraftment in the decellularized mouse lung occurs via a beta1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. Am J Physiol Lung Cell Mol Physiol 306(6):L463–L475. doi:10.1152/ajplung.00100.2013

    Article  CAS  PubMed  Google Scholar 

  37. Sun Z, Gong X, Zhu H et al (2014) Inhibition of Wnt/beta-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury. J Cell Physiol 229(2):213–224. doi:10.1002/jcp.24436

    Article  CAS  PubMed  Google Scholar 

  38. Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933. doi:10.1038/nm.2193

    Article  CAS  PubMed  Google Scholar 

  39. Nichols JE, Niles J, Riddle M et al (2013) Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A 19(17–18):2045–2062. doi:10.1089/ten.TEA.2012.0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Price AP, Godin LM, Domek A et al (2015) Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods 21(1):94–103. doi:10.1089/ten.TEC.2013.0756

    Article  CAS  PubMed  Google Scholar 

  41. Wagner DE, Uhl FE, Weiss DJ (2015) Acellular lung scaffolds in lung bioengineering. In: Bertoncello I (ed) Stem cells in the lung: development. Repair and Regeneration. Springer International Publishing, Cham, pp 309–347. doi:10.1007/978-3-319-21082-7_18

    Chapter  Google Scholar 

  42. Huleihel L, Hussey GS, Naranjo JD et al (2016) Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv 2(6):e1600502. doi:10.1126/sciadv.1600502

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Douglas Taatjes Ph.D. and Nicole Bishop of the UVM Microscopy and Imaging Center for assistance with IHC staining, transmission electron microscopy imaging, and image interpretations. We would like to thank Caroline Andrews, Nicholas Bonenfant, Zachary Borg, Amy Coffey, Amanda Daly, Jacob Dearborn, Nathan Gasek, Ethan Griswold, Zachary Phillips, Joseph Platz, Alexander Riveron, Dino Sokocevic, John Wallis, Sean Wrenn, and Basa Zvorova for the assistance with lung decellularizations, microscopy, and analysis of the detergent effluents. Studies were supported by the NIH RO1 HL127144-01 (DJW), Vermont Lung Center CoBRE grant (P20RR15557), NIH PACT program (contract HHSN268201000008C), NHBLI Lung Biology Training grant T32 HL076122, NIH Institutional Development Award (IDeA) NIGMS grant P20GM103449, and NCRR grant P40RR017447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska E. Uhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Uhl, F.E., Wagner, D.E., Weiss, D.J. (2017). Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics