Skip to main content

Preparation of Platelet Concentrates for Research and Transfusion Purposes

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Platelets are specialized cellular elements of the blood that play central roles in physiologic and pathologic processes of hemostasis, wound healing, host defense, thrombosis, inflammation, and tumor metastasis. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion, signaling molecules, and release of bioactive factors. Transfusion of platelet concentrates is an important treatment component for thrombocytopenia and bleeding. Recent progress in high-throughput mRNA and protein profiling techniques has advanced the understanding of platelet biological functions toward identifying novel platelet-expressed and secreted proteins, analyzing functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. It is important to understand the different standard methods of platelet preparation and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goto S, Hasebe T, Takagi S (2015) Platelets: small in size but essential in the regulation of vascular homeostasis - translation from basic science to clinical medicine. Circ J 79(9):1871–1881

    Article  PubMed  Google Scholar 

  2. McFadyen JD, Kaplan ZS (2015) Platelets are not just for clots. Transfus Med Rev 29(2):110–119

    Article  PubMed  Google Scholar 

  3. Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126(5):582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sim X et al (2016) Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood 127(10):1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schubert S, Weyrich AS, Rowley JW (2014) A tour through the transcriptional landscape of platelets. Blood 124(4):493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clancy L, Freedman JE (2015) The role of circulating platelet transcripts. J Thromb Haemost 13(Suppl 1):S33–S39

    Article  CAS  PubMed  Google Scholar 

  7. Howes JM (2013) Proteomic profiling of platelet signalling. Expert Rev Proteomics 10(4):355–364

    Article  CAS  PubMed  Google Scholar 

  8. Di Michele M, Van Geet C, Freson K (2012) Recent advances in platelet proteomics. Expert Rev Proteomics 9(4):451–466

    Article  PubMed  Google Scholar 

  9. Greening DW et al (2008) Comparison of human platelet-membrane cytoskeletal proteins with the plasma proteome: towards understanding the platelet-plasma nexus. Proteomics Clin Appl 2:63–77

    Article  CAS  PubMed  Google Scholar 

  10. Premsler T et al (2011) Phosphoproteome analysis of the platelet plasma membrane. Methods Mol Biol 728:279–290

    Article  CAS  PubMed  Google Scholar 

  11. Zufferey A et al (2014) Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J Proteome 101:130–140

    Article  CAS  Google Scholar 

  12. Zahedi RP et al (2008) Phosphoproteome of resting human platelets. J Proteome Res 7(2):526–534

    Article  CAS  PubMed  Google Scholar 

  13. Zimman A et al (2014) Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One 9(1):e84488

    Article  PubMed  PubMed Central  Google Scholar 

  14. Milioli M et al (2015) Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteome 121:56–66

    Article  CAS  Google Scholar 

  15. Shai E et al (2012) Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteome 76:287–296

    Article  CAS  Google Scholar 

  16. Cini C et al (2015) Differences in the resting platelet proteome and platelet releasate between healthy children and adults. J Proteome 123:78–88

    Article  CAS  Google Scholar 

  17. Velez P et al (2015) A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations. Sci Rep 5:8198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dzieciatkowska M et al (2015) Proteomics of apheresis platelet supernatants during routine storage: gender-related differences. J Proteome 112:190–209

    Article  CAS  Google Scholar 

  19. Kamhieh-Milz J et al (2016) Secretome profiling of apheresis platelet supernatants during routine storage via antibody-based microarray. J Proteome 150:74–85

    Article  Google Scholar 

  20. Prudent M et al (2014) Proteome changes in platelets after pathogen inactivation—an interlaboratory consensus. Transfus Med Rev 28(2):72–83

    Article  PubMed  Google Scholar 

  21. Donovan LE et al (2013) Exploring the potential of the platelet membrane proteome as a source of peripheral biomarkers for Alzheimer’s disease. Alzheimers Res Ther 5(3):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia A (2016) Platelet clinical proteomics: facts, challenges, and future perspectives. Proteomics Clin Appl 10(8):767–773

    Article  CAS  PubMed  Google Scholar 

  23. Shah, P., et al., Platelet glycoproteins associated with aspirin-treatment upon platelet activation. Proteomics, 2016 9:27452734.

    Google Scholar 

  24. Murphy S (2005) Platelets from pooled buffy coats: an update. Transfusion 45(4):634–639

    Article  PubMed  Google Scholar 

  25. Vassallo RR, Murphy S (2006) A critical comparison of platelet preparation methods. Curr Opin Hematol 13(5):323–330

    Article  PubMed  Google Scholar 

  26. Greening DW et al (2010) International blood collection and storage: clinical use of blood products. J Proteome 73(3):386–395

    Article  CAS  Google Scholar 

  27. Murphy S, Gardner FH (1969) Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med 280(20):1094–1098

    Article  CAS  PubMed  Google Scholar 

  28. Wood, B., et al., Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion, 2016;56(10):2548–2559.

    Google Scholar 

  29. Greening DW et al (2009) Enrichment of human platelet membrane-cytoskeletal proteins for proteomic analysis. In: Pierce M (ed) Proteomic analysis of membrane proteins: methods and protocols. Methods in molecular medicine series. Humana, Louisville, KY, pp 245–258

    Chapter  Google Scholar 

  30. Neufeld M, Nowak-Gottl U, Junker R (1999) Citrate-theophylline-adenine-dipyridamol buffer is preferable to citrate buffer as an anticoagulant for flow cytometric measurement of platelet activation. Clin Chem 45(11):2030–2033

    CAS  PubMed  Google Scholar 

  31. Curvers J et al (2008) Flow cytometric measurement of CD62P (P-selectin) expression on platelets: a multicenter optimization and standardization effort. Transfusion 48(7):1439–1446

    Article  PubMed  Google Scholar 

  32. van der Meer PF (2016) PAS or plasma for storage of platelets? A concise review. Transfus Med 26(5):339–342

    Article  PubMed  Google Scholar 

  33. Thomas, S., Platelets: handle with care.. Transfus Med, 2016.

    Google Scholar 

  34. Smethurst PA (2016) Aging of platelets stored for transfusion. Platelets 27(6):526–534

    Article  CAS  PubMed  Google Scholar 

  35. Bassuni WY, Blajchman MA, Al-Moshary MA (2008) Why implement universal leukoreduction? Hematol Oncol Stem Cell Ther 1(2):106–123

    Article  PubMed  Google Scholar 

  36. Dodd RY (2012) Emerging pathogens and their implications for the blood supply and transfusion transmitted infections. Br J Haematol 159(2):135–142

    Article  PubMed  Google Scholar 

  37. Devine DV, Schubert P (2016) Pathogen inactivation technologies: the advent of pathogen-reduced blood components to reduce blood safety risk. Hematol Oncol Clin North Am 30(3):609–617

    Article  PubMed  Google Scholar 

  38. Kaiser-Guignard J et al (2014) The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates. Blood Rev 28(6):235–241

    Article  CAS  PubMed  Google Scholar 

  39. Moroff G, Luban NL (1997) The irradiation of blood and blood components to prevent graft-versus-host disease: technical issues and guidelines. Transfus Med Rev 11(1):15–26

    Article  CAS  PubMed  Google Scholar 

  40. Kelley WE et al (2009) Washing platelets in neutral, calcium-free, Ringer’s acetate. Transfusion 49(9):1917–1923

    Article  PubMed  Google Scholar 

  41. Johnson L et al (2016) Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion 56(7):1807–1818

    Article  CAS  PubMed  Google Scholar 

  42. Slichter SJ et al (2014) Review of in vivo studies of dimethyl sulfoxide cryopreserved platelets. Transfus Med Rev 28(4):212–225

    Article  PubMed  Google Scholar 

  43. Albanyan AM, Harrison P, Murphy MF (2009) Markers of platelet activation and apoptosis during storage of apheresis- and buffy coat-derived platelet concentrates for 7 days. Transfusion 49(1):108–117

    Article  PubMed  Google Scholar 

  44. Cardigan R, Turner C, Harrison P (2005) Current methods of assessing platelet function: relevance to transfusion medicine. Vox Sang 88(3):153–163

    Article  CAS  PubMed  Google Scholar 

  45. Tynngard N (2009) Preparation, storage and quality control of platelet concentrates. Transfus Apher Sci 41(2):97–104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary L. Sparrow Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Greening, D.W., Simpson, R.J., Sparrow, R.L. (2017). Preparation of Platelet Concentrates for Research and Transfusion Purposes. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics