Skip to main content

MicroRNA Regulatory Networks as Biomarkers in Obesity: The Emerging Role

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

Even though it is a pandemic health problem worldwide, the pathogenesis of obesity is poorly understood. Recently, emerging studies verified that microRNAs (miRNAs) are involved in complicated metabolic processes including adipocyte differentiation, fat cell formation (adipogenesis), obesity-related insulin resistance and inflammation. Many regulatory networks have been identified in murine adipose tissue, but those in human adipose tissue are not as well known. In addition, miRNAs have been detected in circulation, and thus may be usable as diagnostic indicators. MiRNAs may play an important part in regulating metabolic functions in adipose tissues and, by extension, obesity and its associated disorders. Consequently, they may be potential candidates for therapeutic targets and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209. doi:10.1016/s0140-6736(05)67483-1

    Article  PubMed  Google Scholar 

  2. World Health Organization (2014) Global status report on noncommunicable diseases 2014: attaining the nine global noncommunicable diseases targets; a shared responsibility. World Health Organization, Geneva

    Google Scholar 

  3. Heneghan HM, Miller N, Kerin MJ (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11(5):354–361. doi:10.1111/j.1467-789X.2009.00659.x

    Article  CAS  PubMed  Google Scholar 

  4. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524. doi:10.1126/science.1111444

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  6. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hulsmans M, Holvoet P (2013) MicroRNAs as early biomarkers in obesity and related metabolic and cardiovascular diseases. Curr Pharm Des 19(32):5704–5717

    Article  CAS  PubMed  Google Scholar 

  9. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896. doi:10.1038/nrm2066

    Article  CAS  PubMed  Google Scholar 

  10. Mudhasani R, Imbalzano AN, Jones SN (2010) An essential role for Dicer in adipocyte differentiation. J Cell Biochem 110(4):812–816. doi:10.1002/jcb.22625.

  11. Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castano I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L (2010) miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 18(11):2170–2176. doi:10.1038/oby.2009.474

    Article  CAS  Google Scholar 

  12. Liu S, Yang Y, Wu J (2011) TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun 414(3):618–624. doi:10.1016/j.bbrc.2011.09.131.

  13. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ (2009) MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23(6):925–931. doi:10.1210/me.2008-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X (2008) miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci U S A 105(8):2889–2894. doi:10.1073/pnas.0800178105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12(7):R64. doi:10.1186/gb-2011-12-7-r64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF (2011) MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 38(4):239–246. doi:10.1111/j.1440–1681.2011.05493.x.

  17. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T (2010) Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 24(10):1978–1987. doi:10.1210/me.2010-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251. doi:10.1016/j.bbrc.2009.09.098

    Article  CAS  PubMed  Google Scholar 

  20. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27(12):3093–3102. doi:10.1002/stem.235

    CAS  PubMed  Google Scholar 

  21. Tang YF, Zhang Y, Li XY, Li C, Tian W, Liu L (2009) Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS 13(4):331–336. doi:10.1089/omi.2009.0017

    Article  CAS  PubMed  Google Scholar 

  22. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365. doi:10.1074/jbc.C400438200

    Article  CAS  PubMed  Google Scholar 

  23. Wilfred BR, Wang WX, Nelson PT (2007) Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91(3):209–217. doi:10.1016/j.ymgme.2007.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057. doi:10.2337/db08-1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kennell JA, Gerin I, MacDougald OA, Cadigan KM (2008) The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci U S A 105(40):15417–15422. doi:10.1073/pnas.0807763105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320. doi:10.1186/1471-2164-11-320

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY (2013) MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 5(10):1602–1612. doi:10.1002/emmm.201302647.

  28. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31(4):626–638. doi:10.1128/mcb.00894-10

    Article  CAS  PubMed  Google Scholar 

  29. Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S, Yamamoto H, Enomoto-Iwamoto M, Iwamoto M, Komori T (2004) Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 117(Pt 3):417–425. doi:10.1242/jcs.00866

    CAS  PubMed  Google Scholar 

  30. Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG, Scheideler M (2011) MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol 8(5):850–860. doi:10.4161/rna.8.5.16153

    Article  CAS  PubMed  Google Scholar 

  31. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364. doi:10.1002/stem.288

    PubMed  PubMed Central  Google Scholar 

  32. Guo Y, Chen Y, Zhang Y, Zhang Y, Chen L, Mo D (2012) Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int J Biol Sci 8(10):1408–1417. doi:10.7150/ijbs.4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S (2013) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45(8):1585–1593. doi:10.1016/j.biocel.2013.04.029.

  34. Xu P, Vernooy SY, Guo M, Hay BA (2003) The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795

    Article  CAS  PubMed  Google Scholar 

  35. Teleman AA, Maitra S, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422. doi:10.1101/gad.374406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 26(9):1888–1896. doi:10.1016/j.cellsig.2014.05.006.

  37. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. doi:10.1038/nature04303

    Article  PubMed  Google Scholar 

  38. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376(4):728–732. doi:10.1016/j.bbrc.2008.09.050

    Article  CAS  PubMed  Google Scholar 

  39. Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A, Suzuki H, Urayama O, Yamada N, Shimano H (2009) The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 385(4):492–496. doi:10.1016/j.bbrc.2009.05.058

    Article  CAS  PubMed  Google Scholar 

  40. Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K, Stumvoll M, Bluher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4(3):e4699. doi:10.1371/journal.pone.0004699

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, Neto EC, Moon JY, Wang P, Wang IM, Lum PY, Ivanovska I, Cleary M, Greenawalt D, Tsang J, Choi YJ, Kleinhanz R, Shang J, Zhou YP, Howard AD, Zhang BB, Kendziorski C, Thornberry NA, Yandell BS, Schadt EE, Attie AD (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20(8):476–485. doi:10.1007/s00335-009-9217-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5:18193. doi:10.1038/srep18193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lustig Y, Barhod E, Ashwal-Fluss R, Gordin R, Shomron N, Baruch-Umansky K, Hemi R, Karasik A, Kanety H (2014) RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling. Diabetes 63(2):433–445. doi:10.2337/db13-1032

    Article  CAS  PubMed  Google Scholar 

  44. Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-alpha. Diabetologia 56(9):1971–1979. doi:10.1007/s00125-013-2950-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, Chen BS, Chazenbalk G, Azziz R (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7):2278–2286. doi:10.2337/db12-0963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao F, Yu J, Liu B, Guo Y, Li K, Deng J, Zhang J, Wang C, Chen S, Du Y, Lu Y, Xiao Y, Zhang Z, Guo F (2014) A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes 63(8):2631–2642. doi:10.2337/db13–1689.

  47. Hung TM, Ho CM, Liu YC, Lee JL, Liao YR, Wu YM, Ho MC, Chen CH, Lai HS, Lee PH (2014) Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One 9(2):e89446. doi:10.1371/journal.pone.0089446

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kornfeld JW, Baitzel C, Konner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U, Seibler J, Cereghini S, Heeren J, Stoffel M, Bruning JC (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494(7435):111–115. doi:10.1038/nature11793

    Article  CAS  PubMed  Google Scholar 

  49. Yang YM, Seo SY, Kim TH, Kim SG (2012) Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology 56(6):2209–2220. doi:10.1002/hep.25912.

  50. Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX, Hu YN, Wu DM, Liu Y, Yan TT, Jing Q, Liu MF, Zhai QW (2012) Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55(7):2032–2043. doi:10.1007/s00125-012-2539-8

    Article  CAS  PubMed  Google Scholar 

  51. Li W, Wang J, Chen QD, Qian X, Li Q, Yin Y, Shi ZM, Wang L, Lin J, Liu LZ, Jiang BH (2013) Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PLoS One 8(6):e64924. doi:10.1371/journal.pone.0064924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, Zhu BY, Gao ZP, Tang CK, Yin WD, Zhang L, Liao DF (2009) CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 36(9):e32–e39. doi:10.1111/j.1440-1681.2009.05207.x

    Article  CAS  PubMed  Google Scholar 

  53. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653. doi:10.1038/nature10112

    Article  CAS  PubMed  Google Scholar 

  54. He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21(11):2785–2794. doi:10.1210/me.2007-0167

    Article  CAS  PubMed  Google Scholar 

  55. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569. doi:10.1126/science.1189123

    Article  CAS  PubMed  Google Scholar 

  56. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suarez Y, Lai EC, Fernandez-Hernando C (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108(22):9232–9237. doi:10.1073/pnas.1102281108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryu HS, Park SY, Ma D, Zhang J, Lee W (2011) The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 6(3):e17343. doi:10.1371/journal.pone.0017343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang B, Qin W, Zhao B, Shi Y, Yao C, Li J, Xiao H, Jin Y (2009) MicroRNA expression profiling in diabetic GK rat model. Acta Biochim Biophys Sin Shanghai 41(6):472–477

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124(2):175–184. doi:10.1161/circulationaha.110.012237

    Article  CAS  PubMed  Google Scholar 

  60. D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi:10.1093/eurheartj/ehq167

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454. doi:10.1161/circgenetics.110.958975

    Article  CAS  PubMed  Google Scholar 

  62. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi:10.1093/eurheartj/ehq013

    Article  PubMed  Google Scholar 

  63. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506. doi:10.1161/circgenetics.110.957415

    Article  PubMed  Google Scholar 

  64. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684. doi:10.1161/CIRCRESAHA.109.215566

    Article  CAS  PubMed  Google Scholar 

  65. Hulsmans M, Sinnaeve P, Van der Schueren B, Mathieu C, Janssens S, Holvoet P (2012) Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J Clin Endocrinol Metab 97(7):E1213–E1218. doi:10.1210/jc.2012-1008

    Article  CAS  PubMed  Google Scholar 

  66. Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, Zhou W, Xiong B, Zeng Q (2010) miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol 88(5):555–564. doi:10.1038/icb.2010.16

    Article  CAS  PubMed  Google Scholar 

  67. Hulsmans M, Van Dooren E, Mathieu C, Holvoet P (2012) Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS One 7(2):e32794. doi:10.1371/journal.pone.0032794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, L., Miller, D., Yang, Q., Wu, B. (2017). MicroRNA Regulatory Networks as Biomarkers in Obesity: The Emerging Role. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics