Skip to main content

High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

The design of innovative tools for generating physiologically relevant three-dimensional (3D) in vitro models has been recently recognized as a fundamental step to study cell responses and long-term tissue functionalities thanks to its ability to recapitulate the complexity and the dimensional scale of the cellular microenvironment, while directly integrating high-throughput and automatic screening capabilities.

This chapter addresses the development of a poly(dimethylsiloxane)-based microfluidic platform to (1) generate and culture 3D cellular microaggregates under continuous flow perfusion while (2) conditioning them with different combinations/concentrations of soluble factors (i.e., growth factors, morphogens or drug molecules), in a high-throughput fashion. The proposed microfluidic system thus represents a promising tool for establishing innovative high-throughput models for drug screening, investigation of tissues morphogenesis, and optimization of tissue engineering protocols.

*These authors equally contributed to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo A, Clevers H (2012) Modulating WNT receptor turnover for tissue repair. Nat Biotechnol 30(9):835–836

    Article  CAS  PubMed  Google Scholar 

  2. Keung AJ, Kumar S, Schaffer DV (2010) Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 26:533–556

    Article  CAS  PubMed  Google Scholar 

  3. Sasai Y, Eiraku M, Suga H (2012) In vitro organogenesis in three dimensions: self-organising stem cells. Development 139(22):4111–4121

    Article  CAS  PubMed  Google Scholar 

  4. Sant S, Hancock MJ, Donnelly JP et al (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88(6):899–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    Article  CAS  PubMed  Google Scholar 

  6. Vunjak-Novakovic G (2013) Biomimetic platforms for tissue engineering. Isr J Chem 53(9–10):767–776

    CAS  Google Scholar 

  7. Huh D, Torisawa YS, Hamilton GA et al (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    Article  CAS  PubMed  Google Scholar 

  8. Occhetta P, Glass N, Otte E et al (2016) Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays. Integr Biol (Camb) 8(2):194–204

    Article  CAS  Google Scholar 

  9. Pennella F, Rossi M, Ripandelli S et al (2012) Numerical and experimental characterization of a novel modular passive micromixer. Biomed Microdevices 14(5):849–862

    Article  PubMed  Google Scholar 

  10. Occhetta P, Malloggi C, Gazaneo A et al (2015) High-throughput microfluidic platform for adherent single cells non-viral gene delivery. RSC Adv 5(7):5087–5095

    Article  CAS  Google Scholar 

  11. Titmarsh D, Cooper-White J (2009) Microbioreactor array for full-factorial analysis of provision of multiple soluble factors in cellular microenvironments. Biotechnol Bioeng 104(6):1240–1244

    Article  CAS  PubMed  Google Scholar 

  12. Li Jeon N, Baskaran H, Dertinger SK et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    Article  PubMed  Google Scholar 

  13. Lee K, Kim C, Ahn B et al (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717

    Article  CAS  PubMed  Google Scholar 

  14. Sahai R, Martino C, Castrataro P et al (2011) Microfluidic chip with temporal and spatial concentration generation capabilities for biological applications. Microelectron Eng 88(8):1689–1692

    Article  CAS  Google Scholar 

  15. Kim C, Lee K, Kim JH et al (2008) A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 8(3):473–479

    Article  CAS  PubMed  Google Scholar 

  16. Piraino F, Camci-Unal G, Hancock MJ et al (2012) Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels. Lab Chip 12(3):659–661

    Article  CAS  PubMed  Google Scholar 

  17. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  CAS  Google Scholar 

  18. Rasponi M, Piraino F, Sadr N et al (2010) Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation. Microfluid Nanofluid 10(5):1097–1107

    Article  Google Scholar 

  19. Biffi E, Menegon A, Piraino F et al (2012) Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates. Biotechnol Bioeng 109(1):166–175

    Article  CAS  PubMed  Google Scholar 

  20. Biffi E, Piraino F, Pedrocchi A et al (2012) A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. Biomicrofluidics 6(2):24106–2410610

    Article  PubMed  Google Scholar 

  21. Khademhosseini A, Langer R, Borenstein J et al (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103(8):2480–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Occhetta P, Visone R, Russo L et al (2015) VA-086 methacrylate gelatine photopolymerizable hydrogels: a parametric study for highly biocompatible 3D cell embedding. J Biomed Mater Res A 103(6):2109–2117

    Article  CAS  PubMed  Google Scholar 

  23. Lopa S, Piraino F, Kemp RJ et al (2015) Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques. Biotechnol Bioeng 112(7):1457–1471

    Article  CAS  PubMed  Google Scholar 

  24. Marsano A, Conficconi C, Lemme M et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16(3):599–610

    Article  CAS  PubMed  Google Scholar 

  25. Occhetta P, Sadr N, Piraino F et al (2013) Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication 5(3):035002

    Article  CAS  PubMed  Google Scholar 

  26. Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JY, Fluri DA, Marchan R et al (2015) 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol 205:24–35

    Article  CAS  PubMed  Google Scholar 

  28. Mathur A, Loskill P, Shao K et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Occhetta P, Centola M, Tonnarelli B et al (2015) High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Sci Rep 5:10288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLise AM, Stringa E, Woodward WA et al (2000) Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. Methods Mol Biol 137:359–375

    CAS  PubMed  Google Scholar 

  31. Harlow E, Lane D (2006) Fixing attached cells in paraformaldehyde. CSH Protoc 2006(3): 4294–4296. doi:10.1101/pdb.prot4294

  32. Martin I, Muraglia A, Campanile G et al (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138(10):4456–4462

    Article  CAS  PubMed  Google Scholar 

  33. Jiang X, Jeffries RE, Acosta MA et al (2015) Biocompatibility of Tygon(R) tubing in microfluidic cell culture. Biomed Microdevices 17(1):20

    Article  PubMed  Google Scholar 

  34. Titmarsh D, Hidalgo A, Turner J et al (2011) Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol Bioeng 108(12):2894–2904

    Article  CAS  PubMed  Google Scholar 

  35. Young EW, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39(3):1036–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Fondazione Cariplo, grant no. 2012-0891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rasponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Occhetta, P., Visone, R., Rasponi, M. (2017). High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics