Skip to main content

User Guide for the LORE1 Insertion Mutant Resource

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

Lotus japonicus is a model legume used in the study of plant-microbe interactions, especially in the field of biological nitrogen fixation due to its ability to enter into a symbiotic relationship with a soil bacterium, Mesorhizobium loti. The LORE1 mutant population is a valuable resource for reverse genetics in L. japonicus due to its non-transgenic nature, high tagging efficiency, and low copy count. Here, we outline a workflow for identifying, ordering, and establishing homozygous LORE1 mutant lines for a gene of interest, LjFls2, including protocols for growth and genotyping of a segregating LORE1 population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant J 2:487–496. doi:10.1111/j.1365-313X.1992.00487.x

    Article  Google Scholar 

  2. Madsen LH et al (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10. doi:10.1038/ncomms1009

    Article  PubMed  Google Scholar 

  3. Sato S et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239. doi:10.1093/dnares/dsn008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU (2016) Lotus Base: an integrated information portal for the model legume Lotus japonicus. Sci Rep 6:39447. doi:10.1038/srep39447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dam S et al (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 149:1325–1340. doi:10.1104/pp.108.133405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mc CB (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355

    Article  Google Scholar 

  7. Tadege M et al (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347. doi:10.1111/j.1365-313X.2008.03418.x

    Article  CAS  PubMed  Google Scholar 

  8. Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  CAS  PubMed  Google Scholar 

  9. Madsen LH et al (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381. doi:10.1111/j.1365-313X.2005.02534.x

    Article  CAS  PubMed  Google Scholar 

  10. Fukai E et al (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet 6:e1000868. doi:10.1371/journal.pgen.1000868

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fukai E et al (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730. doi:10.1111/j.1365-313X.2011.04826.x

    Article  CAS  PubMed  Google Scholar 

  12. MaƂolepszy A et al (2016) The LORE1 insertion mutant resource. Plant J 88(2):306–317. doi:10.1111/tpj.13243

    Article  PubMed  Google Scholar 

  13. Urbanski DF, MaƂolepszy A, Stougaard J, Andersen SU (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J 69:731–741. doi:10.1111/j.1365-313X.2011.04827.x

    Article  CAS  PubMed  Google Scholar 

  14. Reid DE, Heckmann AB, Novak O, Kelly S, Stougaard J (2016) CYTOKININ OXIDASE/DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus. Plant Physiol 170:1060–1074. doi:10.1104/pp.15.00650

    Article  CAS  PubMed  Google Scholar 

  15. MaƂolepszy A et al (2015) The deubiquitinating enzyme AMSH1 is required for rhizobial infection and nodule organogenesis in Lotus japonicus. Plant J 83:719–731. doi:10.1111/tpj.12922

    Article  PubMed  Google Scholar 

  16. Rasmussen SR et al (2016) Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor. Sci Rep 6:29,733. doi:10.1038/srep29733

    Article  CAS  Google Scholar 

  17. Wang C et al (2015) Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation. Plant Physiol 167:1497–1510. doi:10.1104/pp.114.256107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue L et al (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871. doi:10.1104/pp.114.255430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krishnakumar V et al (2015) Araport: the Arabidopsis information portal. Nucleic Acids Res 43:D1003–D1009. doi:10.1093/nar/gku1200

    Article  CAS  PubMed  Google Scholar 

  21. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76. doi:10.1007/BF00020088

    Article  CAS  PubMed  Google Scholar 

  22. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Untergasser A et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gibson AH, Pagan JD (1977) Nitrate effects on the nodulation of legumes inoculated with nitrate-reductase-deficient mutants of Rhizobium. Planta 134:17–22. doi:10.1007/BF00390088

    Article  CAS  PubMed  Google Scholar 

  25. Streeter J, Nitrate G (1985) Inhibition of legume nodule growth and activity: II. Short term studies with high nitrate supply. Plant Physiol 77:325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Danish National Research Foundation grant DNFR79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig U. Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mun, T., MaƂolepszy, A., Sandal, N., Stougaard, J., Andersen, S.U. (2017). User Guide for the LORE1 Insertion Mutant Resource. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics