Skip to main content

Measurements of Ion-Motive Force Across the Cell Membrane

  • Protocol
  • First Online:
  • 1544 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

Cells need energy to survive. Ion-motive force (IMF) is one of the most important biological energy formats in bacterial cells. Essentially, the ion-motive force is the sum of electrical and chemical potential differences across the cell membrane. For bacteria, the ion-motive force is involved not only in ATP production but also in flagellar motility. The bacterial flagellar motor is driven either by proton or sodium ion. The ion-motive force measurement therefore requires the measurement of membrane potential, proton concentration, or sodium ion concentration. The bacterial flagellar motor is the most powerful molecular machine we have known so far. To understand the energetic condition of bacterial flagellar motors, together with single-motor torque measurement, methods for single-cell ion-motive force measurement have been developed. Here, we describe fluorescent approaches to measure the components of ion-motive force.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41(2):103–132

    Article  CAS  PubMed  Google Scholar 

  2. Baker M, Berry RM (2009) An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor. Contemp Phys 50:617–632

    Article  Google Scholar 

  3. Xue R, Ma Q, Baker M, Bai F (2015) A delicate nanoscale motor made by nature—the bacterial flagellar motor. Adv Sci:2. doi:10.1002/advs.201500129

  4. Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23(5):267–274

    Article  CAS  PubMed  Google Scholar 

  5. Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18(6):693–701

    Article  CAS  PubMed  Google Scholar 

  6. Zhu S, Kojima S, Homma M (2013) Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol 4:410

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lo CJ, Leake MC, Berry RM (2006) Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 90:357–365

    Article  CAS  PubMed  Google Scholar 

  8. Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93:294–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lo CJ, Sowa Y, Pilizota T, Berry RM (2013) The mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc Natl Acad Sci U S A 110:E2544–E2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–501. Reprinted (2011) BBA-Bioenergetics 1807:1507–1538

    Google Scholar 

  11. Chen MT, Lo CJ (2016) Using biophysics to monitor the essential protonmotive force in bacteria. Adv Exp Med Biol 915:69–79

    Article  PubMed  Google Scholar 

  12. Okuno D, Iino R, Noji H (2011) Rotation and structure of FoF1-ATP synthase. J Biochem 149(6):655–664

    Article  CAS  PubMed  Google Scholar 

  13. Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312(5778):1396–1399

    Article  CAS  PubMed  Google Scholar 

  14. Martines KA II, Kitko RD, Mershon P et al (2012) Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. Appl Environ Microbiol 78:3706–3714

    Article  Google Scholar 

  15. Kurre R, Kouzel N, Ramakrishnan K et al (2013) Speed switching of gonococcal surface motility correlates with proton motive force. PLoS One 8(6):e67718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Teuta Pilizota and Dr. Bai Fan for their assistance of single cell protonmotive force measurement. The work in my lab was supported by the Ministry of Science and Technology of the Republic of China under Contract No. MOST-103-2112-M-008-013-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Jung Lo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lin, TS., Sun, YR., Lo, CJ. (2017). Measurements of Ion-Motive Force Across the Cell Membrane. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics