Skip to main content

Enzyme-Responsive Nanoparticles for the Treatment of Disease

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

Nanomedicine for cancer therapy seeks to treat malignancies through the selective accumulation of therapeutics in diseased tissue. Nanoparticles offer the convenience of high drug loading capacities and can be readily decorated with targeting moieties, drugs, and/or diagnostics. Our lab has pioneered a new tissue targeting strategy where enhanced accumulation of nanomaterials occurs as a result of morphology changes to the material in response to overexpressed enzymes in diseased tissues. Herein, we describe the general strategy for the preparation of these enzyme-responsive nanoparticles (ER-NPs) for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79. doi:10.1016/j.addr.2012.10.002

    Article  CAS  Google Scholar 

  2. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1):81–89. doi:10.7150/thno.7193

    Article  CAS  Google Scholar 

  3. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135. doi:10.1016/j.addr.2010.03.011

    Article  CAS  Google Scholar 

  4. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  Google Scholar 

  5. Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56(8):1055–1058. doi:10.1016/j.addr.2004.02.003

    Article  CAS  Google Scholar 

  6. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380. doi:10.1126/science.279.5349.377

    Article  CAS  Google Scholar 

  7. Calderón M, Welker P, Licha K, Fichtner I, Graeser R, Haag R, Kratz F (2011) Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Release 151(3):295–301. doi:10.1016/j.jconrel.2011.01.017

    Article  Google Scholar 

  8. Du J-Z, Du X-J, Mao C-Q, Wang J (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563. doi:10.1021/ja207150n

    Article  CAS  Google Scholar 

  9. Doncom KEB, Hansell CF, Theato P, O’Reilly RK (2012) pH-switchable polymer nanostructures for controlled release. Polym Chem 3(10):3007–3015. doi:10.1039/C2PY20545A

    Article  CAS  Google Scholar 

  10. Liu G, Wang X, Hu J, Zhang G, Liu S (2014) Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J Am Chem Soc 136(20):7492–7497. doi:10.1021/ja5030832

    Article  CAS  Google Scholar 

  11. Phillips DJ, Patterson JP, O’Reilly RK, Gibson MI (2014) Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers. Polym Chem 5(1):126–131. doi:10.1039/C3PY00991B

    Article  CAS  Google Scholar 

  12. Ryu J-H, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) Self-cross-linked polymer nanogels: A versatile nanoscopic drug delivery platform. J Am Chem Soc 132(48):17227–17235. doi:10.1021/ja1069932

    Article  CAS  Google Scholar 

  13. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137(6):2140–2154. doi:10.1021/ja510147n

    Article  CAS  Google Scholar 

  14. Torchilin VP (2010) Passive and active drug targeting: Drug delivery to tumors as an example. In: Schäfer-Korting M (ed) Drug Delivery. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 3–53. doi:10.1007/978-3-642-00477-3_1

    Chapter  Google Scholar 

  15. Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC (2015) Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv Mater 27(31):4611–4615. doi:10.1002/adma.201501803

    Article  CAS  Google Scholar 

  16. Chien M-P, Carlini AS, Hu D, Barback CV, Rush AM, Hall DJ, Orr G, Gianneschi NC (2013) Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J Am Chem Soc 135(50):18710–18713. doi:10.1021/ja408182p

    Article  CAS  Google Scholar 

  17. Chien M-P, Thompson MP, Barback CV, Ku T-H, Hall DJ, Gianneschi NC (2013) Enzyme-directed assembly of a nanoparticle probe in tumor tissue. Adv Mater 25(26):3599–3604. doi:10.1002/adma.201300823

    Article  CAS  Google Scholar 

  18. Chien M-P, Thompson MP, Lin EC, Gianneschi NC (2012) Fluorogenic enzyme-responsive micellar nanoparticles. Chem Sci 3(9):2690–2694. doi:10.1039/C2SC20165H

    Article  CAS  Google Scholar 

  19. Daniel KB, Callmann CE, Gianneschi NC, Cohen SM (2016) Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Chem Commun 52(10):2126–2128. doi:10.1039/C5CC09164K

    Article  CAS  Google Scholar 

  20. Nguyen MM, Carlini AS, Chien M-P, Sonnenberg S, Luo C, Braden RL, Osborn KG, Li Y, Gianneschi NC, Christman KL (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552. doi:10.1002/adma.201502003

    Article  CAS  Google Scholar 

  21. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174 http://www.nature.com/nrc/journal/v2/n3/suppinfo/nrc745_S1.html

    Article  CAS  Google Scholar 

  22. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27. doi:10.1111/j.1742-4658.2010.07919.x

    Article  CAS  Google Scholar 

  23. Kessenbrock K, Plaks V, Werb Z (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 141(1):52–67. doi:10.1016/j.cell.2010.03.015

    Article  CAS  Google Scholar 

  24. Rundhaug JE (2003) Matrix Metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00–00, 2003. Clinical Cancer Research 9(2):551–554.

    Google Scholar 

  25. Creemers EEJM, Cleutjens JPM, Smits JFM, Daemen MJAP (2001) Matrix metalloproteinase inhibition after myocardial infarction: A new approach to prevent heart failure? Circ Res 89(3):201–210. doi:10.1161/hh1501.094396

    Article  CAS  Google Scholar 

  26. Phatharajaree W, Phrommintikul A, Chattipakorn N (2007) Matrix metalloproteinases and myocardial infarction. Can J Cardiol 23(9):727–733

    Article  CAS  Google Scholar 

  27. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87(4):1285–1342. doi:10.1152/physrev.00012.2007

    Article  CAS  Google Scholar 

  28. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69(3):604–613. doi:10.1016/j.cardiores.2005.10.002

    Article  CAS  Google Scholar 

  29. Bielawski CW, Grubbs RH (2000) Highly efficient ring-opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N-heterocyclic carbene ligands. Angew Chem Int Ed 39(16):2903–2906. doi:10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  30. Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization. Prog Polym Sci 32(1):1–29. doi:10.1016/j.progpolymsci.2006.08.006

    Article  CAS  Google Scholar 

  31. Leitgeb A, Wappel J, Slugovc C (2010) The ROMP toolbox upgraded. Polymer 51(14):2927–2946. doi:10.1016/j.polymer.2010.05.002

    Article  CAS  Google Scholar 

  32. Sanford MS, Love JA, Grubbs RH (2001) A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20(25):5314–5318. doi:10.1021/om010599r

    Article  CAS  Google Scholar 

  33. Sanford MS, Love JA, Grubbs RH (2001) Mechanism and activity of ruthenium olefin metathesis catalysts. J Am Chem Soc 123(27):6543–6554. doi:10.1021/ja010624k

    Article  CAS  Google Scholar 

  34. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org Lett 1(6):953–956. doi:10.1021/ol990909q

    Article  CAS  Google Scholar 

  35. Conrad RM, Grubbs RH (2009) Tunable, temperature-responsive polynorbornenes with side chains based on an elastin peptide sequence. Angew Chem Int Ed 48(44):8328–8330. doi:10.1002/anie.200903888

    Article  CAS  Google Scholar 

  36. Thompson MP, Randolph LM, James CR, Davalos AN, Hahn ME, Gianneschi NC (2014) Labelling polymers and micellar nanoparticles via initiation, propagation and termination with ROMP. Polym Chem 5(6):1954–1964. doi:10.1039/C3PY01338C

    Article  CAS  Google Scholar 

  37. Kammeyer JK, Blum AP, Adamiak L, Hahn ME, Gianneschi NC (2013) Polymerization of protecting-group-free peptides via ROMP. Polym Chem 4(14):3929–3933. doi:10.1039/C3PY00526G

    Article  CAS  Google Scholar 

  38. Blum AP, Kammeyer JK, Yin J, Crystal DT, Rush AM, Gilson MK, Gianneschi NC (2014) Peptides displayed as high density brush polymers resist proteolysis and retain bioactivity. J Am Chem Soc 136(43):15422–15437. doi:10.1021/ja5088216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan C. Gianneschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Callmann, C.E., Gianneschi, N.C. (2017). Enzyme-Responsive Nanoparticles for the Treatment of Disease. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics