Skip to main content

Comparative Analysis of Ribonucleic Acid Digests (CARD) by Mass Spectrometry

  • Protocol
  • First Online:
Book cover RNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

We describe the comparative analysis of ribonucleic acid digests (CARD) approach for RNA modification analysis. This approach employs isotope labeling during RNase digestion, which allows the direct comparison of a tRNA of unknown modification status against a reference tRNA, whose sequence or modification status is known. The reference sample is labeled with 18O during RNase digestion while the candidate (unknown) sample is labeled with 16O. These RNase digestion products are combined and analyzed by mass spectrometry. Identical RNase digestion products will appear in the mass spectrum as characteristic doublets, separated by 2 Da due to the 16O/18O mass difference. Singlets arise in the mass spectrum when the sequence or modification status of a particular RNase digestion product from the reference is not matched in the candidate (unknown) sample. This CARD approach for RNA modification analysis simplifies the determination of differences between reference and candidate samples, providing a route for higher throughput screening of samples for modification profiles, including determination of tRNA methylation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopper A (2013) Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast. Genetics 194:43–67

    Google Scholar 

  2. Agris P (2015) The importance of being modified: an unrealized code to RNA structure and function. RNA 21:552–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cantara W, Murphy F 4th, Demirci H, Agris P (2013) Expanded use of sense codons is regulated by modified cytidines in tRNA. Proc Natl Acad Sci U S A 110:10964–10969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weixlbaumer A, Murphy F 4th, Dziergowska A, Malkiewicz A, Vendeix F, Agris P, Ramakrishnan V (2007) Mechanism for expanding the decoding capacity of transfer RNAs by modifications of uridines. Nat Struct Mol Biol 14:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy F 4th, Ramakrishnan V, Malkiewicz A, Agris P (2004) The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat Struct Mol Biol 11:1186–1191

    Article  CAS  PubMed  Google Scholar 

  6. Helm M, Brulé H, Degoul F, Cepanec C, Leroux J, Giegé R, Florentz C (1998) The presence of modified nucleotide is required for the cloverleaf folding of a human mitochondrial. Nucleic Acids Res 26:1636–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang Y, Abo R, Levine S, Dedon P (2014) Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res 42:e170

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dedon PC, Begley TJ (2014) A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation. Chem Res Toxicol 27:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ofengand J, Del Campo M, Kaya Y (2001) Mapping pseudouridine in RNA molecules. Methods 25:365–373

    Article  CAS  PubMed  Google Scholar 

  10. Motorin Y, Muller S, Behm-Ansmant I, Branlant C (2007) Identification of modified residues in RNA by reverse transcription-based methods. Methods Enzymol 425:21–53

    Article  CAS  PubMed  Google Scholar 

  11. Benedum-Wohlgamuth J, Rubio M, Paris Z (2009) Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J Biol Chem 284:23947–23953

    Article  Google Scholar 

  12. Meyer K, Saletore Y, Zumbo P, Elemento O, Mason C, Jaffrey S (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kowalak JA, Pomerantz SC, Crain PF, McCloskey JA (1993) A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res 21:4577–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kowalak J, Bruenger E, McCloskey J (1995) Posttranscriptional modification of the central loop of domain V in Escherichiacoli 23 S ribosomal RNA. J Biol Chem 270:17758–17764

    Article  CAS  PubMed  Google Scholar 

  15. Wetzel C, Limbach P (2012) Global identification of transfer RNAs by liquid chromatography-mass spectrometry (LC-MS). J Proteomics 75:3450–3464

    Article  CAS  PubMed  Google Scholar 

  16. Hossain M, Limbach PA (2007) Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA 13:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li S, Limbach PA (2012) Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry. Anal Chem 84:8607–8613

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Limbach PA (2013) Mass spectrometry sequencing of transfer ribonucleic acids by the comparative analysis of RNA digests (CARD) approach. Analyst 138:1386–1394

    Article  CAS  PubMed  Google Scholar 

  19. Wetzel C, Li S, Limbach PA (2014) Metabolic De-Isotoping for Improved LC-MS Characterization of Modified RNAs. J Am Soc Mass Spectrom 25:1114–1123

    Article  CAS  PubMed  Google Scholar 

  20. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res 41:D262–D267

    Article  CAS  PubMed  Google Scholar 

  21. Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:D159–D162

    Article  PubMed  Google Scholar 

  22. Puri P, Wetzel C, Saffert P, Gaston KW, Russell SP, Varela JAC, van der Vlies P, Zhang G, Limbach PA, Ignatova Z, Poolman B (2014) Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Mol Microbiol 93:944–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan P, Lowe T (2009) GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97

    Article  CAS  PubMed  Google Scholar 

  24. Li S, Limbach PA (2015) Identification of RNA sequence isomer by isotope labeling and LC–MS/MS. J Mass Spectrom 49:1191–1198

    Article  Google Scholar 

  25. Constantopoulos T, Jackson G, Enke C (1999) Effects of salt concentration on analyte response using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 10:625–634

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook J, Fritch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  27. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support of this work was provided by the National Science Foundation (CHE1507357) and the University of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Limbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Paulines, M.J., Limbach, P.A. (2017). Comparative Analysis of Ribonucleic Acid Digests (CARD) by Mass Spectrometry. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics