Skip to main content

Lateralization in Invertebrates

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

This chapter discusses the methods of studying behavioral lateralization in invertebrate animals. Although to date not a great deal is known about lateralized behavior and cognitive function in invertebrates, a number of studies have provided evidence of lateralization in a range of invertebrate species. Behavioral asymmetries have been shown in phyla such as Arthropoda (Insecta, Arachida, and Malacostraca), Mollusca (Gastropoda and Cephalopoda) and Nematoda, and in a variety of behaviors. Here I report the findings of research conducted on lateralization in invertebrates with a specific focus on the methodology adopted. Behavioral asymmetries in the invertebrate line have been investigated by observing biases in different types of behavior that can be classified in six main groups corresponding to the six sections of the chapter (summarized in Table 1). These six sections analyze the methods used to investigate lateral biases in (1) catching prey and foraging behavior; (2) escape response; (3) interactions with conspecifics (aggressive and sexual behavior); (4) spontaneous motor behavior (preferential choice in a T-maze); (5) sensory modalities (olfaction, vision, and hearing); and (6) recall of memory associated with conditioning in one of these sensory modalities. For each method the advantages and disadvantages of using it are examined and the main findings are reported and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McManus IC (1999) Handedness, cerebral lateralisation and the evolution of language. In: Corballis MC, Lea SEG (eds) The descent of mind: psychological perspective on hominid evolution. Oxford University Press, Oxford

    Google Scholar 

  2. Rogers LJ, Vallortigara G, Andrew R (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Versace E, Vallortigara G (2015) Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front Psychol 6:233

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dadda M, Koolhaas WH, Domenici P (2010) Behavioural asymmetry affects escape performance in a teleost fish. Biol Lett 6:414–417

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rogers LJ (2002) Lateralized brain function in anurans: comparison to lateralization in other vertebrates. Laterality 7:219–239

    Article  PubMed  Google Scholar 

  6. Kight SL, Steelman L, Coffey G, Lucente J, Castillo M (2008) Evidence of population level in giant water bugs, Belostoma flumineum Say (Heteroptera: Belostomatidae): T-maze turning is left biased. Behav Proc 79:66–69

    Article  Google Scholar 

  7. Lippolis G, Joss J, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri): a missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behav Evol 73:295–303

    Article  CAS  PubMed  Google Scholar 

  8. Tommasi L, Andrew RJ, Vallortigara G (2000) Eye use is determined by the nature of task in the domestic chick (Gallus gallus). Behav Brain Res 112:119–126

    Article  CAS  PubMed  Google Scholar 

  9. Rogers LJ, Kaplan G (2006) An eye for a predator: lateralization in birds, with particular reference to the Australian magpie. In: Malashichev Y, Deckel W (eds) Behavioral and morphological asymmetries in vertebrates. Landes Bioscience, TX, pp 47–57

    Google Scholar 

  10. Vallortigara G, Rogers LJ, Bisazza A, Lippolis G, Robins A (1998) Complementary right and left hemifield use for predatory and agonistic behaviour in toads. NeuroReport 9:3341–3344

    Article  CAS  PubMed  Google Scholar 

  11. Robins R, Rogers LJ (2006) Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiol Learn Mem 86:214–227

    Article  PubMed  Google Scholar 

  12. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

  13. Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behavioural and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273–1291

    Article  PubMed  Google Scholar 

  14. Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol 4(939):1–10

    Google Scholar 

  15. Rogers LJ (2014) Asymmetry of brain and behavior in animals: its development, function, and human relevance. Genesis 52(6):555–571

    Article  PubMed  Google Scholar 

  16. Vallortigara G, Versace E (2015) Laterality at the neural, cognitive and behavioural levels. In: Snowdon C, Burghardt G, Pepperberg I, Call J, Zentall T (eds) APA handbook of comparative psychology. American Psychological Association Press, Washington, DC

    Google Scholar 

  17. Heuts BA, Brunt T (2005) Behavioural left-right asymmetry extends to arthropods. Behav Brain Sci 28:601–602

    Article  Google Scholar 

  18. Hönicke C, Bliss P, Moritz RF (2015) Effect of density on traffic and velocity on trunk trails of Formica pratensis. Sci Nat 102(3–4):17

    Article  CAS  Google Scholar 

  19. Frasnelli E, Iakovlev I, Reznikova Z (2012) Asymmetry in antennal contacts during trophallaxis in ants. Behav Brain Res 32:7–12

    Article  Google Scholar 

  20. Reznikova Z (2007) Animal intelligence: from individual to social cognition. Cambridge University Press, Cambridge

    Google Scholar 

  21. Heuts BA, Lambrechts DYM (1999) Positional biases in leg loss of spiders and harvestmen (Arachnida). Entomol Ber (Amst) 59:13–20

    Google Scholar 

  22. Ades C, Ramires EN (2002) Asymmetry of leg use during prey handling in the spider Scytodes globula (Scytodidae). J Insect Behav 15:563–570

    Article  Google Scholar 

  23. Ramires EN (1999) Uma abordagem comparativa ao comportamento defensivo, agonístico e locomotor de três espécies de aranhas do gênero Loxosceles (Sicariidae). Unpublished doctoral dissertation, Institute of Psychology, University of São Paulo, Brazil

    Google Scholar 

  24. Kells AR, Goulson D (2001) Evidence for handedness in bumblebees. J Insect Behav 14:47–55

    Article  Google Scholar 

  25. Kawaguchi LG, Ohashi K, Toquenaga Y (2007) Contrasting responses of bumble bees to feeding conspecifics on their familiar and unfamiliar flowers. Proc R Soc B 274:2661–2667

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leadbeater E, Chittka L (2008) Social transmission of nectar-robbing behaviour in bumble-bees. Proc R Soc B 275:1669–1674

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goulson D, Park KJ, Tinsley MC, Bussière LF, Vallejo-Marin M (2013) Social learning drives handedness in nectar robbing bumblebees. Behav Ecol Sociobiol 67:1141–1150

    Article  Google Scholar 

  28. Wells MJ (1978) Octopus: physiology and behaviour of an advanced invertebrate. Chapman & Hall, London

    Book  Google Scholar 

  29. Wells MJ (1962) Brain and behaviour in cephalopods. Heinemann, London

    Google Scholar 

  30. Muntz WRA (1963) Interocular transfer and the function of the optic lobes in octopus. Q J Exp Psychol 15:116–124

    Article  Google Scholar 

  31. Byrne RA, Kuba M, Griebel U (2002) Lateral asymmetry of eye use in Octopus vulgaris. Anim Behav 64:461–468

    Article  Google Scholar 

  32. Byrne RA, Kuba MJ, Meisel DV (2004) Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim Behav 68:1107–1114

    Article  Google Scholar 

  33. Frasnelli E, Ponte G, Fiorito G, Vallortigara G (2014) Investigating lateralization in octopuses: first evidence of asymmetry in the optic lobes. In: Fourth workshop on cognition and evolution, Rovereto, Italy

    Google Scholar 

  34. Byrne RA, Kuba MJ, Meisel DV, Griebel U, Mather JA (2006) Does Octopus vulgaris have preferred arms? J Comp Psychol 3:198–204

    Article  Google Scholar 

  35. Byrne RA, Kuba MJ, Meisel DV, Griebel U, Mather JA (2006) Octopus arm choice is strongly influenced by eye use. Behav Brain Res 172:195–201

    Article  PubMed  Google Scholar 

  36. Fagot J, Vauclair J (1991) Manual laterality in non human primates: a distinction between handedness and manual specialization. Psychol Bull 109:76–89

    Article  CAS  PubMed  Google Scholar 

  37. Gutnick T, Byrne RA, Hochner B, Kuba M (2011) Octopus vulgaris uses visual information to determine the location of its arm. Curr Biol 21:460–462

    Article  CAS  PubMed  Google Scholar 

  38. Heuts BA (1999) Lateralization of trunk muscle volume, and lateralization of swimming turns of fish responding to external stimuli. Behav Processes 47:113–124

    Article  CAS  PubMed  Google Scholar 

  39. Bisazza A, Rogers LJ, Vallortigara G (1998) The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, amphibians, and reptiles. Neurosci Biobehav Rev 22:411–426

    Article  CAS  PubMed  Google Scholar 

  40. Bisazza A, De Santi A, Vallortigara G (1999) Laterally and cooperation: mosquitofish move closer to a predator when the companion is on the left side. Anim Behav 57:1145–1149

    Article  CAS  PubMed  Google Scholar 

  41. Vallortigara G, Bisazza A (2002) How ancient is brain lateralization? In: Andrew RJ, Rogers LJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 9–69

    Chapter  Google Scholar 

  42. Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175

    Article  CAS  PubMed  Google Scholar 

  43. Takeuchi Y, Tobo S, Hori M (2008) Morphological asymmetry of the abdomen and behavioral laterality in atyid shrimps. Zool Sci 25:355–363

    Article  PubMed  Google Scholar 

  44. Tobo S, Takeuchi Y, Hori M (2011) Morphological asymmetry and behavioural laterality in the crayfish, Procambarus clarkia. Ecol Res 27(1):53–59

    Article  Google Scholar 

  45. Rosa Salva O, Regolin L, Mascalzoni E, Vallortigara G (2012) Cerebral and behavioural asymmetry in animal social recognition. Comp Cogn Behav Rev 7:110–138

    Article  Google Scholar 

  46. Hews DK, Castellano M, Hara E (2004) Aggression in females is also lateralized: left-eye bias during aggressive courtship rejection in lizards. Anim Behav 68:1201–1207

    Article  Google Scholar 

  47. Ventolini N, Ferrero EA, Sponza S et al (2005) Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Anim Behav 69:1077–1084

    Article  Google Scholar 

  48. Austin NA, Rogers LJ (2012) Limb preference and lateralization of aggression, reactivity and vigilance in feral horses (Equus caballus). Anim Behav 83:239–247

    Article  Google Scholar 

  49. Casperd JM, Dunbar RIM (1996) Asymmetries in the visual processing of emotional cues during agonistic interactions in gelada baboons. Behav Processes 37:57–65

    Article  CAS  PubMed  Google Scholar 

  50. Pratt AE, McLain DK, Lathrop GR (2003) The assessment game in sand fiddler crab contests for breeding burrows. Anim Behav 65:945–955

    Article  Google Scholar 

  51. Jones DS, George RW (1982) Handedness in fiddler crabs as an aid in taxonomic grouping of the genus Uca (Decapoda, Ocypodidae). Crustaceana 43:100–102

    Article  Google Scholar 

  52. Backwell PRY, Matsumasa M, Double M, Roberts A, Murai M, Keogh JS, Jennions MD (2007) What are the consequences of being left-clawed in a predominantly right-clawed fiddler crab? Proc R Soc B 274:2723–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salmon M (1984) The courtship, aggressive and mating system of a “primitive” fiddler crab (Uca vocans). Trans Zool Soc Lond 37:1–50

    Article  Google Scholar 

  54. Hyatt GW, Salmon M (1978) Combat in fiddler crabs Uca pugilator and Uca pugnax-quantitative analysis. Behaviour 65:182–211

    Article  Google Scholar 

  55. Rogers LJ, Rigosi E, Frasnelli E, Vallortigara G (2013) A right antenna for social behaviour in honeybees. Sci Rep 3:2045

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rogers LJ, Frasnelli E, Versace E, Vallortigara G (2016) Lateralized social behaviour in a “solitary” red mason bee, Osmia bicornis. Sci Rep 6:29411. doi:10.1038/srep29411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nepi M, Cresti L, Maccagnani B, Ladurner E, Pacini E (2005) From the anther to the proctodeum: Pear (Pyrus communis) pollen digestion in Osmia cornuta larvae. J Insect Physiol 51:749–757

    Article  CAS  PubMed  Google Scholar 

  58. Tepedino VJ, Torchio PF (1994) Founding and ussuroing: equally efficient paths to nesting success in Osmia lignaria propinqua (Hymenoptera: Megachilidae). Ann Entomol Soc Am 87:946–953

    Article  Google Scholar 

  59. Seidelmann K (1999) The race for females: the mating system of the red mason bee, Osmia rufa (L.) (Hymenoptera: Megachilidae). J Insect Behav 12:13–25

    Article  Google Scholar 

  60. Benelli G, Donati E, Romano D, Stefanini C, Messing RH, Canale A (2015) Lateralization of aggressive displays in a tephritid fly. Sci Nat Naturwiss 102(1–2):1251

    Google Scholar 

  61. Benelli G, Romano D, Messing RH, Canale A (2015) Population-level lateralized aggressive and courtship displays make better fighters not lovers: evidence from a fly. Behav Processes 115:163–168

    Article  PubMed  Google Scholar 

  62. Shelly TE (2000) Aggression between wild and laboratory-reared sterile males of the Mediterranean fruit fly in a natural habitat (Diptera: Tephritidae). Fla Entomol 83:105–108

    Article  Google Scholar 

  63. Papadopoulos NT, Carey JR, Liedo P, Muller G, Senturk D (2009) Virgin females compete for mates in the male lekking species Ceratitis capitata. Physiol Entomol 34:238–245

    Article  Google Scholar 

  64. Romano D, Canale A, Benelli G (2015) Do right-biased boxers do it better? Population-level asymmetry of aggressive displays enhances fighting success in blowflies. Behav Processes 113C:159–162

    Article  Google Scholar 

  65. Benelli G, Romano D, Messing RH, Canale A (2015) First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitol Res 114:1613–1617

    Article  PubMed  Google Scholar 

  66. Asami T, Gitternberger E, Falkner G (2008) Whole-body enantiomorphy and maternal inheritance of chiral reversal in the pond snail Lymnaea stagnalis. J Heredity 99(5):552–557

    Article  Google Scholar 

  67. Davison A, Frend HT, Moray C, Wheatley H, Searle LJ, Eichhorn MP (2009) Mating behaviour in pond snails Lymnaea stagnalis is a maternally inherited lateralized trait. Biol Lett 5:20–22

    Article  PubMed  Google Scholar 

  68. Van Duivenboden YA, Ter Maat A (1988) Mating behaviour of Lymnaea stagnalis. Malacologia 28:53–64

    Google Scholar 

  69. Chase R (1986) Brain cells that command sexual behavior in the snail Helix aspersa. J Neurobiol 17(6):669–679

    Article  CAS  PubMed  Google Scholar 

  70. Kamimura Y (2006) Right-handed penises of the earwig Labidura riparia (Insecta, Dermaptera, Labiduridae): evolutionary relationships between structural and behavioral asymmetries. J Morphol 267:1381–1389

    Article  CAS  PubMed  Google Scholar 

  71. Regen J (1913) Ueber die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch uebertragene Stridulationslaute des Maennchens. Pfliigers Arch 155:193–200

    Article  Google Scholar 

  72. Elliott CJH, Koch UT (1983) Sensory feedback stabilizing reliable stridulation in the field cricket Glyllus campestris L. Anim Behav 31:887–901

    Article  Google Scholar 

  73. Stärk AA (1958) Untersuchungen am Lautorgan einiger Grillen- und Laubheuschrecken-Arten, zugleich ein Beitrag zum Rechts-Links-Problem. Zool Jahrb Anat 77:9–50

    Google Scholar 

  74. Olton DS (1979) Mazes, maps, and memory. Am Psychol 34:583–596

    Article  CAS  PubMed  Google Scholar 

  75. O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  76. Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10:29–36

    Article  PubMed  Google Scholar 

  77. Jozet-Alves C, Viblanc VA, Romagny S, Dacher M, Healy SD, Dickel L (2012) Visual lateralization is task- and age-dependent in cuttlefish (Sepia officinalis). Anim Behav 83:1313–1318

    Article  Google Scholar 

  78. Jozet-Alves C, Romagny S, Bellanger C, Dickel L (2012) Cerebral correlates of visual lateralization in Sepia. Behav Brain Res 234:20–25

    Article  PubMed  Google Scholar 

  79. Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, Oxford

    Google Scholar 

  80. Jozet-Alves C, Hébert M (2013) Embryonic exposure to predator odour modulates visual lateralization in cuttlefish. Proc R Soc B 280(1752):2012–2575

    Google Scholar 

  81. Hunt ER, O'Shea-Wheller TA, Albery GF, Bridger TH, Gumn M, Franks NR (2014) Ants show a leftward turning bias when exploring unknown nest sites. Biol Lett 10(12):20140945

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cooper R, Nudo N, Gonzales JM, Vinson SB, Liang H (2010) Side-dominance of Periplaneta americana persists through antenna amputation. J Insect Behav 24:175–185

    Article  Google Scholar 

  83. Buchanan SM, Kain JS, de Bivort BL (2015) Neuronal control of locomotor handedness in Drosophila. Proc Natl Acad Sci U S A 112(21):6700–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bell ATA, Niven JE (2014) Individual-level, context-dependent handedness in the desert locust. Curr Biol 24:R382–R383

    Article  CAS  PubMed  Google Scholar 

  85. Letzkus P, Ribi WA, Wood JT, Zhu H, Zhang SW, Srinivasan MV (2006) Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 16:1471–1476

    Article  CAS  PubMed  Google Scholar 

  86. Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  CAS  PubMed  Google Scholar 

  87. Frasnelli E, Anfora G, Trona F, Tessarolo F, Vallortigara G (2010) Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behav Brain Res 209:221–225

    Article  CAS  PubMed  Google Scholar 

  88. Letzkus P, Boeddeker N, Wood JT, Zhang SW, Srinivasan MV (2007) Lateralization of visual learning in the honeybee. Biol Lett 4:16–18

    Article  PubMed Central  Google Scholar 

  89. Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:691–700

    Article  PubMed  Google Scholar 

  90. Basari N, Bruendl AC, Hemingway CE, Roberts NW, Sendova-Franks AB, Franks NR (2014) Landmarks and ant search strategies after interrupted tandem runs. J Exp Biol 217:944–954

    Article  PubMed  Google Scholar 

  91. Möglich M (1978) Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Soc 25:205–225

    Article  Google Scholar 

  92. Tommasi L, Vallortigara G (2001) Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behav Neurosci 115:602–613

    Article  CAS  PubMed  Google Scholar 

  93. Duistermars BJ, Chow DM, Frye MA (2009) Flies require bilateral sensory input to track odour gradients in flight. Curr Biol 19:1301–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB (2007) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11:87–199

    Google Scholar 

  95. Bailey WJ, Yang S (2002) Hearing asymmetry and auditory acuity in the Australian bushcricket Requena verticalis (Listroscelidinae; Tettigoniidae; Orthoptera). J Exp Biol 205:2935–2942

    PubMed  Google Scholar 

  96. Prager J, Larsen ON (1981) Asymmetrical hearing in the water bug Corixa punctata observed with laser vibrometry. Naturwissenschaften 68:579–580

    Article  Google Scholar 

  97. Prager J, Streng R (1982) The resonance properties of the physical gill of Corixa punctata and their significance in sound reception. J Comp Physiol A 148:323–335

    Article  Google Scholar 

  98. Rogers LJ, Vallortigara G (2008) From antenna to antenna: lateral shift of olfactory memory in honeybees. PLoS One 3:e2340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Frasnelli E, Vallortigara G, Rogers LJ (2010) Response competition associated with right-left antennal asymmetries of new and old olfactory memory traces in honeybees. Behav Brain Res 209:36–41

    Article  PubMed  Google Scholar 

  100. Cipolla-Neto J, Horn G, McCabe BJ (1982) Hemispheric asymmetry and imprinting: the effect of sequential lesions of the hyperstriatum ventrale. Exp Brain Res 48:22–27

    Article  CAS  PubMed  Google Scholar 

  101. Clayton NS, Krebs JR (1994) Lateralization and unilateral transfer of spatial memory in marsh tits: are two eyes better than one? J Comp Physiol A 174:769–773

    Google Scholar 

  102. Andrew RJ (1999) The differential roles of right and left sides of the brain in memory formation. Behav Brain Res 98:289–295

    Article  CAS  PubMed  Google Scholar 

  103. Rigosi E, Frasnelli E, Vinegoni C, Antolini R, Anfora G, Vallortigara G, Haase A (2011) Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: a morphological and behavioural study. Behav Brain Res 221(1):290–294

    Article  PubMed  PubMed Central  Google Scholar 

  104. Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236–239

    Article  PubMed  Google Scholar 

  105. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents-a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33(2):253–280

    Article  CAS  Google Scholar 

  106. Reinhardt J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS One 5(2):e9110

    Article  CAS  Google Scholar 

  107. Laloi D, Bailez O, Blight M, Roger B, Pham-Delegue M-H, Wadhams LJ (2000) Recognition of complex odors by restrained and free-flying honeybees, Apis mellifera. J Chem Ecol 26:2307–2319

    Article  CAS  Google Scholar 

  108. Anfora G, Rigosi E, Frasnelli E, Ruga E, Trona F, Vallortigara G (2011) Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee, Bombus terrestris. PLoS One 6(4):e18903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frasnelli E, Vallortigara G, Rogers LJ (2011) Right-left antennal asymmetry of odour memory recall in three species of Australian stingless bees. Behav Brain Res 224(1):121–127

    Article  PubMed  Google Scholar 

  110. Heisenberg M (1994) Central brain function in insects: genetic studies on the mushroom bodies and central complex in Drosophila. Neural basis of behavioural adaptations. Fortschr Zool 39:61–79

    Google Scholar 

  111. Pascual A, Huang K-L, Nevue J, Préat T (2004) Brain asymmetry and long-term memory. Nature 427:605–606

    Article  CAS  PubMed  Google Scholar 

  112. Matsuo R, Kawaguchi E, Yamagishi M, Amano T, Ito E (2010) Unilateral memory storage in the procerebrum of the terrestrial slug Limax. Neurobiol Learn Mem 93:337–342

    Article  PubMed  Google Scholar 

  113. Kasai Y, Watanabe S, Kirino Y, Matsuo R (2006) The procerebrum is necessary for odor-aversion learning in the terrestrial slug Limax valentianus. Learn Mem 13(4):482–488

    Article  PubMed  PubMed Central  Google Scholar 

  114. Friedrich A, Teyke T (1998) Identification of stimuli and input pathways mediating food-attraction conditioning in the snail, Helix. J Comp Physiol A 183:247–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Frasnelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Frasnelli, E. (2017). Lateralization in Invertebrates. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics