Skip to main content

Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

Abstract

Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88

    Article  CAS  PubMed  Google Scholar 

  2. Fortini ME (2002) Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 3:673–684

    Article  CAS  PubMed  Google Scholar 

  3. Neurath H, Walsh KA (1976) Role of proteolytic-enzymes in biological regulation. Proc Natl Acad Sci U S A 73:3825–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    Article  CAS  PubMed  Google Scholar 

  5. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  CAS  PubMed  Google Scholar 

  6. Cory S, Adams JM (2002) The BCL2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  7. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappa B, inflammation and cancer. Nat Rev Cancer 10:561–574

    Article  CAS  PubMed  Google Scholar 

  8. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  9. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291:113–135

    Article  CAS  PubMed  Google Scholar 

  11. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  CAS  PubMed  Google Scholar 

  12. Ludewig S, Kossner M, Schiller M, Baumann K, Schirmeister T (2010) Enzyme kinetics and hit validation in fluorimetric protease assays. Curr Top Med Chem 10:368–382

    Article  CAS  PubMed  Google Scholar 

  13. Wysocka M, Lesner A (2013) Future of protease activity assays. Curr Pharm Des 19:1062–1067

    Article  CAS  PubMed  Google Scholar 

  14. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9:690–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jedinak A, Maliar T (2005) Inhibitors of proteases as anticancer drugs—minireview. Neoplasma 52:185–192

    PubMed  Google Scholar 

  16. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  17. Eggeling C, Jager S, Winkler D, Kask P (2005) Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction. Curr Pharm Biotechnol 6:351–371

    Article  CAS  PubMed  Google Scholar 

  18. Hu H-Y, Gehrig S, Reither G, Subramanian D, Mall MA, Plettenburg O, Schultz C (2014) FRET-based and other fluorescent proteinase probes. Biotechnol J 9:266–281

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Kim Y-P (2015) Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity. BMB Rep 48:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim GB, Kim Y-P (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136:29–41

    Article  CAS  PubMed  Google Scholar 

  22. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83:8826–8837

    Article  CAS  PubMed  Google Scholar 

  23. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  24. Blanco-Canosa JB, Wu M, Susumu K, Petryayeva E, Jennings TL, Dawson PE, Algar WR, Medintz IL (2014) Recent progress in the bioconjugation of quantum dots. Coord Chem Rev 263–264:101–137

    Article  Google Scholar 

  25. Bradburne CE, Delehanty JB, Gemmill KB, Mei BC, Mattoussi H, Susumu K, Blanco-Canosa JB, Dawson PE, Medintz IL (2013) Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug Chem 24:1570–1583

    Article  CAS  PubMed  Google Scholar 

  26. Tsoi KM, Dai Q, Alman BA, Chan WCW (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671

    Article  CAS  PubMed  Google Scholar 

  27. Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42:1236–1250

    Article  CAS  PubMed  Google Scholar 

  28. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  PubMed  Google Scholar 

  29. Mattoussi H, Palui G, Na HB (2012) Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev 64:138–166

    Article  CAS  PubMed  Google Scholar 

  30. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834

    Article  CAS  PubMed  Google Scholar 

  31. Algar WR, Kim H, Medintz IL, Hildebrandt N (2014) Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: investigations and applications. Coord Chem Rev 263–264:65–85

    Article  Google Scholar 

  32. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  CAS  PubMed  Google Scholar 

  33. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    Article  CAS  PubMed  Google Scholar 

  34. Cheung HC (2002) Resonance energy transfer. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy: principles, vol 2. Kluwer, New York, pp 127–176

    Chapter  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New York

    Book  Google Scholar 

  36. Wu M, Massey M, Petryayeva E, Algar WR (2015) Energy transfer pathways in a quantum dot-based concentric FRET configuration. J Phys Chem C 119:26183–26195

    Article  CAS  Google Scholar 

  37. Kim H, Ng CYW, Algar WR (2014) Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio. Langmuir 30:5676–5685

    Article  CAS  PubMed  Google Scholar 

  38. Algar WR, Ancona MG, Malanoski AP, Susumu K, Medintz IL (2012) Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. ACS Nano 6:11044–11058

    Article  CAS  PubMed  Google Scholar 

  39. Wu M, Algar WR (2015) Concentric Förster resonance energy transfer imaging. Anal Chem 87:8078–8083

    Article  CAS  PubMed  Google Scholar 

  40. Wu M, Petryayeva E, Algar WR (2014) Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration. Anal Chem 86:11181–11188

    Article  CAS  PubMed  Google Scholar 

  41. Wurth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550

    Article  PubMed  Google Scholar 

  42. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmuller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294

    Article  CAS  Google Scholar 

  43. Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields—review. J Phys Chem 75:991–1024

    Article  Google Scholar 

  44. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  45. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  PubMed  Google Scholar 

  46. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  47. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett 1:207–211

    Article  CAS  Google Scholar 

  48. Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MB, Peng XG (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575

    Article  CAS  PubMed  Google Scholar 

  49. Zhan NQ, Palui G, Mattoussi H (2015) Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic motif and lipoic acid anchors. Nat Protoc 10:859–874

    Article  PubMed  Google Scholar 

  50. Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436

    Article  CAS  PubMed  Google Scholar 

  51. Mei BC, Susumu K, Medintz IL, Mattoussi H (2009) Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc 4:412–423

    Article  CAS  PubMed  Google Scholar 

  52. Clapp AR, Goldman ER, Mattoussi H (2006) Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1:1258–1266

    Article  CAS  PubMed  Google Scholar 

  53. Wu M, Petryayeva E, Medintz IL, Algar WR (2014) Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer. Methods Mol Biol 1199:215–239

    Article  CAS  PubMed  Google Scholar 

  54. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  55. Aldeek F, Safi M, Zhan NQ, Palui G, Mattoussi H (2013) Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination. ACS Nano 7:10197–10210

    Article  CAS  PubMed  Google Scholar 

  56. Algar WR, Blanco-Canosa JB, Manthe RL, Susumu K, Stewart MH, Dawson PE, Medintz IL (2013) Synthesizing and modifying peptides for chemoselective ligation and assembly into quantum dot-peptide bioconjugates. Methods Mol Biol 1025:47–73

    Article  CAS  PubMed  Google Scholar 

  57. Sapsford KE, Farrell D, Sun S, Rasooly A, Mattoussi H, Medintz IL (2009) Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sens Actuators B 139:13–21

    Article  CAS  Google Scholar 

  58. Zhan NQ, Palui G, Safi M, Ji X, Mattoussi H (2013) Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J Am Chem Soc 135:13786–13795

    Article  CAS  PubMed  Google Scholar 

  59. Gravel E, Tanguy C, Cassette E, Pons T, Knittel F, Bernards N, Garofalakis A, Duconge F, Dubertret B, Doris E (2013) Compact tridentate ligands for enhanced aqueous stability of quantum dots and in vivo imaging. Chem Sci 4:411–417

    Article  CAS  Google Scholar 

  60. Palui G, Na HB, Mattoussi H (2012) Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals. Langmuir 28:2761–2772

    Article  CAS  PubMed  Google Scholar 

  61. Susumu K, Oh E, Delehanty JB, Blanco-Canosa JB, Johnson BJ, Jain V, Hervey WJ, Algar WR, Boeneman K, Dawson PE, Medintz IL (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J Am Chem Soc 133:9480–9496

    Article  CAS  PubMed  Google Scholar 

  62. Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc 132:9804–9813

    Article  CAS  PubMed  Google Scholar 

  63. Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B (2010) Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J Am Chem Soc 132:4556–4557

    Article  CAS  PubMed  Google Scholar 

  64. Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18:4949–4958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and the University of British Columbia for support of their research. W.R.A. is also grateful for support through a Canada Research Chair (Tier 2) and a Michael Smith Foundation for Health Research Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Russ Algar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Massey, M., Li, J.J., Algar, W.R. (2017). Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics