Skip to main content

Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes

  • Protocol
  • First Online:
Small Molecule Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1518))

Abstract

Protein–protein interactions are essential to cellular functions and signaling pathways. We recently combined bioinformatics and custom oligonucleotide arrays to construct custom-made peptide-phage libraries for screening peptide–protein interactions, an approach we call proteomic peptide-phage display (ProP-PD). In this chapter, we describe protocols for phage display for the identification of natural peptide binders for a given protein. We finally describe deep sequencing for the analysis of the proteomic peptide-phage display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stumpf MPH, Thorne T, De Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davey NE, Van Roey K, Weatheritt RJ et al (2012) Attributes of short linear motifs. Mol BioSyst 8:268–281

    Article  CAS  PubMed  Google Scholar 

  3. Chene P (2004) Inhibition of the p53-MDM2 interaction: targeting a protein–protein interface. Mol Cancer Res 2:20–28

    CAS  PubMed  Google Scholar 

  4. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu M, Li C, Pazgier M et al (2010) D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA 107:14321–14326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein–protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ivarsson Y, Arnold R, Mclaughlin M et al (2014) Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 111:2542–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  CAS  PubMed  Google Scholar 

  9. Davey NE, Travé G, Gibson TJ (2011) How viruses hijack cell regulation. Trends Biochem Sci 36:159–169

    Article  CAS  PubMed  Google Scholar 

  10. Bork P, Jensen LJ, Von Mering C et al (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  11. Ryan DP, Matthews JM (2005) Protein–protein interactions in human disease. Curr Opin Struct Biol 15:441–446

    Article  CAS  PubMed  Google Scholar 

  12. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507

    Article  CAS  PubMed  Google Scholar 

  13. Larman HB, Zhao Z, Laserson U et al (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caruthers MH, Beaucage SL, Becker C et al (1983) Deoxyoligonucleotide synthesis via the phosphoramidite method. Gene Amplif Anal 3:1–26

    CAS  PubMed  Google Scholar 

  15. Caruthers MH (1985) Gene synthesis machines: DNA chemistry and its uses. Science 230:281–285

    Article  CAS  PubMed  Google Scholar 

  16. Caruthers MH, Barone AD, Beaucage SL et al (1987) Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods Enzymol 154:287–313

    Article  CAS  PubMed  Google Scholar 

  17. Kosuri S, Eroshenko N, Leproust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matzas M, Stahler PF, Kefer N et al (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol 28:1291–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mclaughlin ME, Sidhu SS (2013) Chapter fifteen - engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing. In: Amy EK (ed) Method enzymol. Academic, London, pp 327–349

    Google Scholar 

  20. Fuh G, Pisabarro MT, Li Y et al (2000) Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J Biol Chem 275:21486–21491

    CAS  PubMed  Google Scholar 

  21. Held HA, Sidhu SS (2004) Comprehensive mutational analysis of the M13 major coat protein: improved scaffolds for C-terminal phage display. J Mol Biol 340:587–597

    Article  CAS  PubMed  Google Scholar 

  22. Malik P, Terry TD, Gowda LR et al (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260:9–21

    Article  CAS  PubMed  Google Scholar 

  23. Tonikian R, Zhang Y, Boone C et al (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2:1368–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seo, MH., Nim, S., Jeon, J., Kim, P.M. (2017). Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 1518. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6584-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6584-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6582-3

  • Online ISBN: 978-1-4939-6584-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics