Skip to main content

Dissecting Phagocytic Removal of Apoptotic Cells in Caenorhabditis elegans

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

The unique features of programmed cell death during C. elegans development provide an outstanding system to decipher the mechanisms governing phagocytic removal of apoptotic cells. Like in many other organisms, phagocytosis in C. elegans involves several essential events, including exposure of eat-me signals on the cell corpse surface, cell corpse recognition and engulfment by phagocytes, and maturation of phagosomes for cell corpse destruction. Forward or reverse genetic approaches, microscopy-based cell biological methods, and biochemical assays have successfully been employed to identify key factors that control different steps of phagocytosis and to understand their functions in these cellular events. In this chapter, we mainly describe how to apply genetic and cell biological approaches to dissect cell corpse removal by phagocytosis in C. elegans.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7(2):97–108. doi:10.1038/nrm1836

    Article  CAS  PubMed  Google Scholar 

  2. Pinto SM, Hengartner MO (2012) Cleaning up the mess: cell corpse clearance in Caenorhabditis elegans. Curr Opin Cell Biol 24(6):881–888. doi:10.1016/j.ceb.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, Yang H, Guo P, Geng X, Shang Z, Peden E, Kage-Nakadai E, Mitani S, Xue D (2010) Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol 12(7):655–664. doi:10.1038/ncb2068

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kang Y, Zhao D, Liang H, Liu B, Zhang Y, Liu Q, Wang X, Liu Y (2012) Structural study of TTR-52 reveals the mechanism by which a bridging molecule mediates apoptotic cell engulfment. Genes Dev 26(12):1339–1350. doi:10.1101/gad.187815.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Wang H, Kage-Nakadai E, Mitani S, Wang X (2012) C. elegans secreted lipid-binding protein NRF-5 mediates PS appearance on phagocytes for cell corpse engulfment. Curr Biol 22(14):1276–1284. doi:10.1016/j.cub.2012.06.004

    Article  PubMed  Google Scholar 

  6. Mapes J, Chen YZ, Kim A, Mitani S, Kang BH, Xue D (2012) CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 22(14):1267–1275. doi:10.1016/j.cub.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Wu YC, Fadok VA, Lee MC, Gengyo-Ando K, Cheng LC, Ledwich D, Hsu PK, Chen JY, Chou BK, Henson P, Mitani S, Xue D (2003) Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302(5650):1563–1566. doi:10.1126/science.1087641

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Chen YZ, Zhang Y, Wang X, Zhao X, Godfroy JI 3rd, Liang Q, Zhang M, Zhang T, Yuan Q, Ann Royal M, Driscoll M, Xia NS, Yin H, Xue D (2015) A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nat Commun 6:5717. doi:10.1038/ncomms6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu TY, Wu YC (2010) Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr Biol 20(6):477–486. doi:10.1016/j.cub.2010.01.062

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh HH, Hsu TY, Jiang HS, Wu YC (2012) Integrin alpha PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans. PLoS Genet 8(5), e1002663. doi:10.1371/journal.pgen.1002663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cabello J, Neukomm LJ, Gunesdogan U, Burkart K, Charette SJ, Lochnit G, Hengartner MO, Schnabel R (2010) The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8(2), e1000297. doi:10.1371/journal.pbio.1000297

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conradt B, Xue D (2005) Programmed cell death. WormBook 1–13. doi: 10.1895/wormbook.1.32.1

  13. Chen D, Jian Y, Liu X, Zhang Y, Liang J, Qi X, Du H, Zou W, Chen L, Chai Y, Ou G, Miao L, Wang Y, Yang C (2013) Clathrin and AP2 are required for phagocytic receptor-mediated apoptotic cell clearance in Caenorhabditis elegans. PLoS Genet 9(5), e1003517. doi:10.1371/journal.pgen.1003517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z (2013) Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Development 140(15):3230–3243. doi:10.1242/dev.093732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng S, Wang K, Zou W, Miao R, Huang Y, Wang H, Wang X (2015) PtdIns(4,5)P(2) and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol 210(3):485–502. doi:10.1083/jcb.201501038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou W, Lu Q, Zhao D, Li W, Mapes J, Xie Y, Wang X (2009) Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS Genet 5(10), e1000679. doi:10.1371/journal.pgen.1000679

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z (2012) Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 10(1), e1001245. doi:10.1371/journal.pbio.1001245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng S, Wu Y, Lu Q, Yan J, Zhang H, Wang X (2013) Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 9(12):2022–2032. doi:10.4161/auto.26323

    Article  CAS  PubMed  Google Scholar 

  19. Sarantis H, Balkin DM, De Camilli P, Isberg RR, Brumell JH, Grinstein S (2012) Yersinia entry into host cells requires Rab5-dependent dephosphorylation of PI(4,5)P(2) and membrane scission. Cell Host Microbe 11(2):117–128. doi:10.1016/j.chom.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9(10):781–795. doi:10.1038/nrm2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, Sifri CD, Hengartner MO, Ravichandran KS (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10(5):556–566. doi:10.1038/ncb1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen D, Xiao H, Zhang K, Wang B, Gao Z, Jian Y, Qi X, Sun J, Miao L, Yang C (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327(5970):1261–1264. doi:10.1126/science.1184840

    Article  CAS  PubMed  Google Scholar 

  23. Lu N, Shen Q, Mahoney TR, Liu X, Zhou Z (2011) Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol Biol Cell 22(3):354–374. doi:10.1091/mbc.E10-09-0756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kinchen JM, Ravichandran KS (2010) Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464(7289):778–782. doi:10.1038/nature08853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Zou W, Zhao D, Yan J, Zhu Z, Lu J, Wang X (2009) C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development 136(14):2445–2455. doi:10.1242/dev.035949

    Article  CAS  PubMed  Google Scholar 

  26. Lu Q, Zhang Y, Hu T, Guo P, Li W, Wang X (2008) C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135(6):1069–1080. doi:10.1242/dev.016063

    Article  CAS  PubMed  Google Scholar 

  27. Mangahas PM, Yu X, Miller KG, Zhou Z (2008) The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol 180(2):357–373. doi:10.1083/jcb.200708130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo P, Hu T, Zhang J, Jiang S, Wang X (2010) Sequential action of Caenorhabditis elegans Rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci U S A 107(42):18016–18021. doi:10.1073/pnas.1008946107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao H, Chen D, Fang Z, Xu J, Sun X, Song S, Liu J, Yang C (2009) Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans. Mol Biol Cell 20(1):21–32. doi:10.1091/mbc.E08-04-0441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasaki A, Nakae I, Nagasawa M, Hashimoto K, Abe F, Saito K, Fukuyama M, Gengyo-Ando K, Mitani S, Katada T, Kontani K (2013) Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans. Mol Biol Cell 24(10):1584–1592. doi:10.1091/mbc.E12-08-0628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu B, Du H, Rutkowski R, Gartner A, Wang X (2012) LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337(6092):351–354. doi:10.1126/science.1220281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu M, Liu Y, Zhao L, Gan Q, Wang X, Yang C (2014) The lysosomal cathepsin protease CPL-1 plays a leading role in phagosomal degradation of apoptotic cells in Caenorhabditis elegans. Mol Biol Cell 25(13):2071–2083. doi:10.1091/mbc.E14-01-0015

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104(1):43–56

    Article  CAS  PubMed  Google Scholar 

  34. Kritikou EA, Milstein S, Vidalain PO, Lettre G, Bogan E, Doukoumetzidis K, Gray P, Chappell TG, Vidal M, Hengartner MO (2006) C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes Dev 20(16):2279–2292. doi:10.1101/gad.384506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kutscher LM, Shaham S (2014) Forward and reverse mutagenesis in C. elegans. WormBook 1–26. doi: 10.1895/wormbook.1.167.1

  36. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. doi:10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schweinsberg PJ, Grant BD (2013) C. elegans gene transformation by microparticle bombardment. WormBook 1–10. doi: 10.1895/wormbook.1.166.1

  38. Hall DH (1995) Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol 48:395–436

    Article  CAS  PubMed  Google Scholar 

  39. Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129(1):79–94

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Isabel Hanson for proofreading. Research in the authors’ laboratories is supported by the National Natural Science Foundation of China (31325015 to X.W., 31230043 and 31025015 to C.Y.), the National Basic Research Program of China (2010CB835202, 2013CB910101, and 2014CB849700 to X.W., 2013CB910102 and 2011CB910102 to C.Y.), the Chinese Academy of Sciences (KJZD-EW-L08 to C.Y.), and an International Early Career Scientist grant from the Howard Hughes Medical Institute to X.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chonglin Yang or Xiaochen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cheng, S., Liu, K., Yang, C., Wang, X. (2017). Dissecting Phagocytic Removal of Apoptotic Cells in Caenorhabditis elegans . In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics