Skip to main content

Evaluation of Innate Immune Gene Expression Following HDAC Inhibitor Treatment by High Throughput qPCR and PhosFlow Cytometry

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

The dynamics of chromatin structure contribute to the regulation of gene transcription and in part, the changes in chromatin structure associated with gene activation/repression are a function of the state of histone acetylation. Histone deacetylases (HDACs) deacetylate histone tails leading to a more compact structure of chromatin that in turn represses gene transcription. Given the rapid activation and/or repression of gene networks following microbial infection, the role of HDACs in the epigenetic regulation of genes involved in the innate and adaptive immune responses has become an area of extensive research. In relation to the immune-modulatory properties of HDAC inhibitors, we provide in the following methodological article an extended description of two techniques—a high throughput qPCR assay combined with PhosFlow cytometry—to evaluate the modulation of antiviral and inflammatory signaling cascades following HDAC inhibitor treatment. The high-throughput qPCR assay is based on the nanofluidic Fluidigm BioMark system that permits the analysis of up to 9216 qPCR reactions at once in a self-design open array chip. Together with the more refined analysis provided with the Phosflow technique, these two strategies offer invaluable tools to measure modulation of innate immune gene networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  2. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    Article  CAS  PubMed  Google Scholar 

  3. Ropero S, Ballestar E, Alaminos M, Arango D, Schwartz S Jr, Esteller M (2008) Transforming pathways unleashed by a HDAC2 mutation in human cancer. Oncogene 27:4008–4012

    Article  CAS  PubMed  Google Scholar 

  4. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    Article  CAS  PubMed  Google Scholar 

  5. Licciardi PV, Ververis K, Tang ML, El-Osta A, Karagiannis TC (2013) Immunomodulatory effects of histone deacetylase inhibitors. Curr Mol Med 13:640–647

    Article  CAS  PubMed  Google Scholar 

  6. Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL (1998) A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A 95:3519–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun Y, Chin YE, Weisiger E, Malter C, Tawara I, Toubai T, Gatza E, Mascagni P, Dinarello CA, Reddy P (2009) Cutting edge: negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J Immunol 182:5899–5903

    Article  CAS  PubMed  Google Scholar 

  8. Placek K, Coffre M, Maiella S, Bianchi E, Rogge L (2009) Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 127:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, Yasmeen A, Bismar TA, Kirn D, Falls T, Snoulten VE, Vanderhyden BC, Werier J, Atkins H, Vaha-Koskela MJ, Stojdl DF, Bell JC, Hiscott J (2008) Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 105:14981–14986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shulak L, Beljanski V, Chiang C, Dutta SM, Van Grevenynghe J, Belgnaoui SM, Nguyen TL, Di Lenardo T, Semmes OJ, Lin R, Hiscott J (2014) Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-kappaB-dependent autophagy. J Virol 88:2927–2940

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiang C, Beljanski V, Yin K, Olagnier D, Ben Yebdri F, Steel C, Goulet ML, DeFilippis VR, Streblow DN, Haddad EK, Trautmann L, Ross T, Lin R, Hiscott J (2015) Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists. J Virol 89:8011–8025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V, Slifker M, He Z, Nichols CN, Lin R, Balachandran S, Hiscott J (2014) Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 10:e1004566

    Article  PubMed  PubMed Central  Google Scholar 

  14. Olagnier D, Scholte FE, Chiang C, Albulescu IC, Nichols C, He Z, Lin R, Snijder EJ, van Hemert MJ, Hiscott J (2014) Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol 88:4180–4194

    Article  PubMed  PubMed Central  Google Scholar 

  15. Olagnier D, Sze A, Bel Hadj S, Chiang C, Steel C, Han X, Routy JP, Lin R, Hiscott J, van Grevenynghe J (2014) HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells. PLoS Pathog 10:e1004575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by grants from the National Institutes of Health (AI108861 and 1R21CA192185-01 to JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hiscott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Olagnier, D., Chiang, C., Hiscott, J. (2017). Evaluation of Innate Immune Gene Expression Following HDAC Inhibitor Treatment by High Throughput qPCR and PhosFlow Cytometry. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics