Skip to main content

Segmental Isotopic Labeling of Proteins for NMR Study Using Intein Technology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Segmental isotopic labeling of samples for NMR studies is attractive for large complex biomacromolecular systems, especially for studies of function-related protein–ligand interactions and protein dynamics (Goto and Kay, Curr Opin Struct Biol 10:585–592, 2000; Rosa et al., Molecules (Basel, Switzerland) 18:440, 2013; Hiroaki, Expert Opin Drug Discovery 8:523–536, 2013). Advantages of segmental isotopic labeling include selective examination of specific segment(s) within a protein by NMR, significantly reducing the spectral complexity for large proteins, and allowing for the application of a variety of solution-based NMR strategies. By utilizing intein techniques (Wood and Camarero, J Biol Chem 289:14512–14519, 2014; Paulus, Annu Rev Biochem 69:447–496, 2000), two related approaches can generally be used in the segmental isotopic labeling of proteins: expressed protein ligation (Muir, Annu Rev Biochem 72:249–289, 2003) and protein trans-splicing (Shah et al., J Am Chem Soc 134:11338–11341, 2012). Here, we describe general implementation and latest improvements of expressed protein ligation method for the production of segmental isotopic labeled NMR samples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10(5):585–592

    Article  CAS  PubMed  Google Scholar 

  2. De Rosa L, Russomanno A, Romanelli A, D’Andrea L (2013) Semi-synthesis of labeled proteins for spectroscopic applications. Molecules (Basel, Switzerland) 18(1):440

    Article  CAS  Google Scholar 

  3. Hiroaki H (2013) Recent applications of isotopic labeling for protein NMR in drug discovery. Expert Opin Drug Discovery 8(5):523–536. doi:10.1517/17460441.2013.779665

    Article  CAS  Google Scholar 

  4. Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289(21):14512–14519. doi:10.1074/jbc.R114.552653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69(1):447–496. doi:10.1146/annurev.biochem.69.1.447

    Article  CAS  PubMed  Google Scholar 

  6. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72(1):249–289. doi:10.1146/annurev.biochem.72.121801.161900

    Article  CAS  PubMed  Google Scholar 

  7. Shah NH, Dann GP, Vila-Perello M, Liu ZH, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134(28):11338–11341. doi:10.1021/Ja303226x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules (Nobel Lecture). J Biomol NMR 27(1):13–39. doi:10.1023/a:1024733922459

    Article  PubMed  Google Scholar 

  9. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228. doi:10.1126/science.1124964

    Article  CAS  PubMed  Google Scholar 

  10. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43(3):145–150. doi:10.1007/s10858-008-9296-5

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi H, Swapna GV, Wu KP, Afinogenova Y, Conover K, Mao B, Montelione GT, Inouye M (2012) Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility. J Biomol NMR 52(4):303–313. doi:10.1007/s10858-012-9610-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A 96(2):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120(22):5591–5592. doi:10.1021/ja980776o

    Article  CAS  Google Scholar 

  14. Freiburger L, Sonntag M, Hennig J, Li J, Zou P, Sattler M (2015) Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J Biomol NMR 63(1):1–8. doi:10.1007/s10858-015-9981-0

    Article  CAS  PubMed  Google Scholar 

  15. Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci 96(22):12424–12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kubiak T, Cowburn D (1986) Enzymatic semisynthesis of porcine despentapeptide (B26-30) insulin using unprotected desoctapeptide (B23-30) insulin as a substrate. Model studies. Int J Pept Protein Res 27(5):514

    Article  CAS  PubMed  Google Scholar 

  17. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  PubMed  Google Scholar 

  18. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96(18):10068–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 51(5):343–354

    Article  CAS  PubMed  Google Scholar 

  20. Evans TC Jr, Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7(11):2256–2264. doi:10.1002/pro.5560071103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128(20):6640–6646

    Article  CAS  PubMed  Google Scholar 

  22. Camarero JA, Shekhtman A, Campbell EA, Chlenov M, Gruber TM, Bryant DA, Darst SA, Cowburn D, Muir TW (2002) Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci U S A 99(13):8536–8541. doi:10.1073/pnas.132033899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FHT (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25(1):150–162

    Article  CAS  PubMed  Google Scholar 

  24. Xu MQ, Evans TC Jr (2001) Intein-mediated ligation and cyclization of expressed proteins. Methods 24(3):257–277. doi:10.1006/meth.2001.1187

    Article  CAS  PubMed  Google Scholar 

  25. Evans TC, Benner J, Xu MQ (1999) The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 274(26):18359–18363

    Article  CAS  PubMed  Google Scholar 

  26. Chong SR, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272(25):15587–15590

    Article  CAS  PubMed  Google Scholar 

  27. Chong SR, Williams KS, Wotkowicz C, Xu MQ (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem 273(17):10567–10577

    Article  CAS  PubMed  Google Scholar 

  28. Muralidharan V, Dutta K, Cho J, Vila-Perello M, Raleigh DP, Cowburn D, Muir TW (2006) Solution structure and folding characteristics of the C-terminal SH3 domain of c-Crk-II. Biochemistry 45(29):8874–8884. doi:10.1021/bi060590z

    Article  CAS  PubMed  Google Scholar 

  29. Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci U S A 101(17):6397–6402. doi:10.1073/pnas.0306616101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu D, Xu R, Dutta K, Cowburn D (2008) N-terminal cysteinyl proteins can be prepared using thrombin cleavage. FEBS Lett 582(7):1163–1167. doi:10.1016/j.febslet.2008.02.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwai H, Pluckthun A (1999) Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett 459(2):166–172

    Article  CAS  PubMed  Google Scholar 

  32. Camarero JA, Fushman D, Sato S, Giriat I, Cowburn D, Raleigh DP, Muir TW (2001) Rescuing a destabilized protein fold through backbone cyclization. J Mol Biol 308(5):1045–1062

    Article  CAS  PubMed  Google Scholar 

  33. Gentle IE, De Souza DP, Baca M (2004) Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug Chem 15(3):658–663. doi:10.1021/bc049965o

    Article  CAS  PubMed  Google Scholar 

  34. Tolbert TJ, Franke D, Wong CH (2005) A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E-coli as TEV protease cleavable fusion protein. Bioorg Med Chem 13(3):909–915

    Article  CAS  PubMed  Google Scholar 

  35. Tolbert TJ, Wong CH (2004) Conjugation of glycopeptide thioesters to expressed protein fragments: semisynthesis of glycosylated interleukin-2. Methods Mol Biol 283:255–266. doi:10.1385/1-59259-813-7:255

    CAS  PubMed  Google Scholar 

  36. Macmillan D, Arham L (2004) Cyanogen bromide cleavage generates fragments suitable for expressed protein and glycoprotein ligation. J Am Chem Soc 126(31):9530–9531. doi:10.1021/ja047855m

    Article  CAS  PubMed  Google Scholar 

  37. Weeks SD, Drinker M, Loll PJ (2007) Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr Purif 53(1):40–50. doi:10.1016/j.pep.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  38. Hauser PS, Ryan RO (2007) Expressed protein ligation using an N-terminal cysteine containing fragment generated in vivo from a pe1B fusion protein. Protein Expr Purif 54(2):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hosfield T, Lu Q (1999) Influence of the amino acid residue downstream of (Asp)(4)Lys on enterokinase cleavage of a fusion protein. Anal Biochem 269(1):10–16

    Article  CAS  PubMed  Google Scholar 

  40. Cowburn D, Muir TW (2001) Segmental isotopic labeling using expressed protein ligation. Methods Enzymol 339:41–54

    Article  CAS  PubMed  Google Scholar 

  41. Liu D, Xu R, Cowburn D (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Methods Enzymol 462:151–175. doi:10.1016/S0076-6879(09)62008-5

    Article  CAS  PubMed  Google Scholar 

  42. Schubeis T, Luhrs T, Ritter C (2015) Unambiguous assignment of short- and long-range structural restraints by solid-state NMR spectroscopy with segmental isotope labeling. Chembiochem 16(1):51–54. doi:10.1002/cbic.201402446

    Article  CAS  PubMed  Google Scholar 

  43. Nabeshima Y, Mizuguchi M, Kajiyama A, Okazawa H (2014) Segmental isotope-labeling of the intrinsically disordered protein PQBP1. FEBS Lett 588(24):4583–4589. doi:10.1016/j.febslet.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  44. Michel E, Skrisovska L, Wuthrich K, Allain FH (2013) Amino acid-selective segmental isotope labeling of multidomain proteins for structural biology. Chembiochem 14(4):457–466. doi:10.1002/cbic.201200732

    Article  CAS  PubMed  Google Scholar 

  45. Barraud P, Allain FH (2013) Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. J Biomol NMR 55(1):119–138. doi:10.1007/s10858-012-9696-4

    Article  CAS  PubMed  Google Scholar 

  46. Xue J, Burz DS, Shekhtman A (2012) Segmental labeling to study multidomain proteins. Adv Exp Med Biol 992:17–33. doi:10.1007/978-94-007-4954-2_2

    Article  CAS  PubMed  Google Scholar 

  47. Cho JH, Muralidharan V, Vila-Perello M, Raleigh DP, Muir TW, Palmer AG III (2011) Tuning protein autoinhibition by domain destabilization. Nat Struct Mol Biol 18(5):550–555. doi:10.1038/nsmb.2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen J, Wang J (2011) A segmental labeling strategy for unambiguous determination of domain-domain interactions of large multi-domain proteins. J Biomol NMR 50(4):403–410. doi:10.1007/s10858-011-9526-0

    Article  CAS  PubMed  Google Scholar 

  49. Minato Y, Ueda T, Machiyama A, Shimada I, Iwai H (2012) Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J Biomol NMR 53(3):191–207. doi:10.1007/s10858-012-9628-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu R, Liu D, Cowburn D (2012) Abl kinase constructs expressed in bacteria: facilitation of structural and functional studies including segmental labeling by expressed protein ligation. Mol Biosyst 8(7):1878–1885. doi:10.1039/c2mb25051a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schubeis T, Yuan P, Ahmed M, Nagaraj M, van Rossum BJ, Ritter C (2015) Untangling a repetitive amyloid sequence: correlating biofilm-derived and segmentally labeled curli fimbriae by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 54:14669–14672. doi:10.1002/anie.201506772

    Article  CAS  PubMed  Google Scholar 

  52. Clerico EM, Zhuravleva A, Smock RG, Gierasch LM (2010) Segmental isotopic labeling of the Hsp70 molecular chaperone DnaK using expressed protein ligation. Biopolymers 94(6):742–752. doi:10.1002/bip.21426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Live DH, Davis DG, Agosta WC, Cowburn D (1984) Long-range hydrogen-bond mediated effects in peptides - N-15 Nmr-study of gramicidin-S in water and organic-solvents. J Am Chem Soc 106(7):1939–1941

    Article  CAS  Google Scholar 

  54. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140

    Article  CAS  PubMed  Google Scholar 

  55. Mulder FA, Schipper D, Bott R, Boelens R (1999) Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J Mol Biol 292(1):111–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DL acknowledges ShanghaiTech University and Shanghai Municipal Government for financial support; Supported by NIH grants GM47042 (DC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cowburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, D., Cowburn, D. (2017). Segmental Isotopic Labeling of Proteins for NMR Study Using Intein Technology. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics