Skip to main content

Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Protein micropatterning techniques, including microfluidic devices and protein micro-contact printing, enable the generation of highly controllable substrates for spatial manipulation of intracellular and extracellular signaling determinants to examine the development of cultured dissociated neurons in vitro. In particular, culture substrates coated with proteins of interest in defined stripes, including cell adhesion molecules and secreted proteins, have been successfully used to study neuronal polarization, a process in which the neuron establishes axon and dendrite identities, a critical architecture for the input/output functions of the neuron. We have recently used this methodology to pattern the extracellular protein Semaphorin 3A (Sema3A), a secreted factor known to control neuronal development in the mammalian embryonic cortex. We showed that stripe-patterned Sema3A regulates axon and dendrite formation during the early phase of neuronal polarization in cultured rat hippocampal neurons. Here, we describe microfabrication and substrate stripe micropatterning of Sema3A. We note that same methodologies can be applied to pattern other extracellular proteins that regulate neuronal development in the embryonic brain, as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and Netrin-1. We describe modifications of these methodologies for stripe micropatterning of membrane-permeable analog of the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP), intracellular regulators of neuronal polarization that might act downstream of Sema3A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205

    Article  CAS  PubMed  Google Scholar 

  2. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnes AP, Solecki D, Polleux F (2008) New sights into the molecular mechanisms specifying neuronal polarity in vivo. Curr Opin Neurobiol 18:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polleux F, Giger RJ, Ginty DD et al (1998) Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282:1904–1906

    Article  CAS  PubMed  Google Scholar 

  5. Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    Article  CAS  PubMed  Google Scholar 

  6. Chen G, Sima J, Jin M et al (2008) Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 11:36–44

    Article  PubMed  Google Scholar 

  7. Shelly M, Cancedda L, Lim BK et al (2011) Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 71:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mrksich M, Dike LE, Tien J et al (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 235:305–313

    Article  CAS  PubMed  Google Scholar 

  9. Qin D, Xia YN, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  CAS  PubMed  Google Scholar 

  10. Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  11. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  12. Geissler M, Xia YN (2004) Patterning: principles and some new developments. Adv Mater 16:1249–1269

    Article  CAS  Google Scholar 

  13. Shelly M, Cancedda L, Heilshorn S et al (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129:565–577

    Article  CAS  PubMed  Google Scholar 

  14. Yi JJ, Barnes AP, Hand R et al (2010) TGF-beta signaling specifies axons during brain development. Cell 142:144–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esch T, Lemmon V, Banker G (2000) Differential effects of NgCAM and N-cadherin on the development of axons and dendrites by cultured hippocampal neurons. J Neurocytol 29:215–223

    Article  CAS  PubMed  Google Scholar 

  16. Shelly M, Lim BK, Cancedda L et al (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327:547–552

    Article  CAS  PubMed  Google Scholar 

  17. Delamarche E, Juncker D, Schmid H (2005) Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater 17:2911–2933

    Article  CAS  Google Scholar 

  18. Wang MT, Braun HG, Kratzmuller T et al (2001) Patterning polymers by micro-fluid-contact printing. Adv Mater 13:1312–1317

    Article  CAS  Google Scholar 

  19. Bernard A, Renault JP, Michel B et al (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070

    Article  CAS  Google Scholar 

  20. Kim E, Whitesides GM (1995) Use of minimal free-energy and self-assembly to form shapes. Chem Mater 7:1257–1264

    Article  CAS  Google Scholar 

  21. Tang SKY, Whitesides GM (2009) Basic microfluidic and soft lithographic techniques. In: Fainman Y, Lee LP, Saltis D, Yang C (eds) Optofluidics: fundamentals, devices, and applications. McGraw-Hill (New York, NY)

    Google Scholar 

  22. Dotti CG, Banker GA (1987) Experimentally induced alteration in the polarity of developing neurons. Nature 330:254–256

    Article  CAS  PubMed  Google Scholar 

  23. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal-neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  24. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  CAS  PubMed  Google Scholar 

  25. Xia YN, Qin D, Yin YD (2001) Surface patterning and its application in wetting/dewetting studies. Curr Opin Colloid Interface 6:54–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from NIH, NS084111 (M. Shelly), and by grants from the Deutsche Forschungsgemeinschaft, FZ 111 (S. Pautot). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Shelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shelly, M., Lee, SI., Suarato, G., Meng, Y., Pautot, S. (2017). Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics