Skip to main content

Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee DA, Higginbotham EJ (2005) Glaucoma and its treatment: a review. Am J Health Syst Pharm 62(7):691–699

    PubMed  Google Scholar 

  2. Kruger R, Schols L, Muller T, Kuhn W, Woitalla D, Przuntek H, Epplen JT, Riess O (2001) Evaluation of the gamma-synuclein gene in German Parkinson’s disease patients. Neurosci Lett 310(2-3):191–193

    Article  CAS  PubMed  Google Scholar 

  3. Rockenstein E, Hansen LA, Mallory M, Trojanowski JQ, Galasko D, Masliah E (2001) Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res 914(1-2):48–56

    Article  CAS  PubMed  Google Scholar 

  4. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103(1):106–112

    Article  CAS  PubMed  Google Scholar 

  5. Surguchov A, McMahan B, Masliah E, Surgucheva I (2001) Synucleins in ocular tissues. J Neurosci Res 65(1):68–77

    Article  CAS  PubMed  Google Scholar 

  6. Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N (2008) Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 28(2):548–561. doi:10.1523/jneurosci.3714-07.2008

    Article  CAS  PubMed  Google Scholar 

  7. Surgucheva I, Shestopalov VI, Surguchov A (2008) Effect of gamma-synuclein silencing on apoptotic pathways in retinal ganglion cells. J Biol Chem 283(52):36377–36385. doi:10.1074/jbc.M806660200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilding C, Bell K, Beck S, Funke S, Pfeiffer N, Grus FH (2014) Gamma-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway. PLoS One 9(3):90737. doi:10.1371/journal.pone.0090737

    Article  Google Scholar 

  9. Nickells RW (2012) The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. Invest Ophthalmol Vis Sci 53(5):2476–2481. doi:10.1167/iovs.12-9483h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48. doi:10.1038/nrg3575

    Article  CAS  PubMed  Google Scholar 

  11. Gibson G, Powell JE, Marigorta UM (2015) Expression quantitative trait locus analysis for translational medicine. Genome Med 7(1):60. doi:10.1186/s13073-015-0186-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7. doi:10.1186/1471-2156-5-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu H, Wang X, Pullen M, Guan H, Chen H, Sahu S, Zhang B, Chen H, Williams RW, Geisert EE, Lu L, Jablonski MM (2011) Genetic dissection of the Gpnmb network in the eye. Invest Ophthalmol Vis Sci 52(7):4132–4142. doi:10.1167/iovs.10-6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jablonski MM, Freeman NE, Orr WE, Templeton JP, Lu L, Williams RW, Geisert EE (2011) Genetic pathways regulating glutamate levels in retinal Muller cells. Neurochem Res 36(4):594–603. doi:10.1007/s11064-010-0277-1

    Article  CAS  PubMed  Google Scholar 

  15. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW (2009) Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Mol Vis 15:1730–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams PA, Howell GR, Barbay JM, Braine CE, Sousa GL, John SW, Morgan JE (2013) Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 8(8), e72282. doi:10.1371/journal.pone.0072282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burgess-Herbert SL, Cox A, Tsaih S-W, Paigen B (2008) Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 180(4):2227–2235. doi:10.1534/genetics.108.090175

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peirce JL, Li H, Wang J, Manly KF, Hitzemann RJ, Belknap JK, Rosen GD, Goodwin S, Sutter TR, Williams RW, Lu L (2006) How replicable are mRNA expression QTL? Mamm Genome 17(6):643–656. doi:10.1007/s00335-005-0187-8

    Article  CAS  PubMed  Google Scholar 

  19. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat Genet 37(3):225–232. doi:10.1038/ng1497

    Article  CAS  PubMed  Google Scholar 

  20. Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ, Lu L, Williams RW, Byrne GI (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol 179(3):1814–1824

    Article  CAS  PubMed  Google Scholar 

  21. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242. doi:10.1038/ng1518

    Article  CAS  PubMed  Google Scholar 

  22. Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with neocortical gene expression in mice. BMC Neurosci 10:44. doi:10.1186/1471-2202-10-44

    Article  PubMed  PubMed Central  Google Scholar 

  23. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SW (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121(4):1429–1444. doi:10.1172/jci44646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Templeton JP, Freeman NE, Nickerson JM, Jablonski MM, Rex TS, Williams RW, Geisert EE (2013) Innate immune network in the retina activated by optic nerve crush. Invest Ophthalmol Vis Sci 54(4):2599–2606. doi:10.1167/iovs.12-11175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu H, Li L, Watson ER, Williams RW, Geisert EE, Jablonski MM, Lu L (2011) Complex interactions of Tyrp1 in the eye. Mol Vis 17:2455–2468

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: growth associated protein 43 and phosphatase tensin homolog network. Mol Vis 17:1355–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nookala S, Gandrakota R, Wohabrebbi A, Wang X, Howell D, Giorgianni F, Beranova-Giorgianni S, Desiderio DM, Jablonski MM (2010) In search of the identity of the XAP-1 antigen: a protein localized to cone outer segments. Invest Ophthalmol Vis Sci 51(5):2736–2743. doi:10.1167/iovs.09-4286

    Article  PubMed  PubMed Central  Google Scholar 

  28. Winzeler A, Wang JT (2013) Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb Protoc 2013(7):643–652. doi:10.1101/pdb.prot074906

    PubMed  Google Scholar 

  29. Hegmann JP, Possidente B (1981) Estimating genetic correlations from inbred strains. Behav Genet 11(2):103–114

    Article  CAS  PubMed  Google Scholar 

  30. Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW (2012) Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS One 7(4), e34586. doi:10.1371/journal.pone.0034586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chintalapudi SR, Morales-Tirado VM, Williams RW, Jablonski MM (2015) Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells. FEBS J 283(4):678–693

    Article  Google Scholar 

  32. Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, Williams RW (2008) Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet 4(11), e1000260. doi:10.1371/journal.pgen.1000260

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding Q, Cecarini V, Keller JN (2007) Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 30(1):31–36. doi:10.1016/j.tins.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11(2):240–252. doi:10.1101/gr.162001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lehner B, Sanderson CM (2004) A protein interaction framework for human mRNA degradation. Genome Res 14(7):1315–1323. doi:10.1101/gr.2122004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM, Rawlins JN, Copley RR, Morris AP, Flint J, Mott R (2004) Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 36(11):1197–1202. doi:10.1038/ng1450

    Article  CAS  PubMed  Google Scholar 

  37. Leygraf A, Hohoff C, Freitag C, Willis-Owen SA, Krakowitzky P, Fritze J, Franke P, Bandelow B, Fimmers R, Flint J, Deckert J (2006) Rgs 2 gene polymorphisms as modulators of anxiety in humans? J Neural Trans (Vienna, Austria: 1996) 113(12):1921–1925. doi:10.1007/s00702-006-0484-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Robert Williams (UTHSC) and Dr. Vanessa Morales-Tirado (UTHSC) for contributing to the research design and execution of our original study that is published in The FEBS Journal. We would like to thank Dr. Dan Rosson (UTHSC) for technical assistance with the cell sorting. We thank Dr. Michael Whitt (UTHSC), Dr. Tony Reiner (UTHSC), and Dr. R.K. Rao (UTHSC) for providing C57BL/6J mice eyes. We also thank Dr. Lu Lu (UTHSC) for his assistance in generating the BXD microarray datasets that were used in these analyses. We also thank Dr. Eldon Geisert (Emory University) and Mr. Bill Orr (UTHSC) for formatting the dataset of Howell et al. (NCBI accession number GSE26299) so that it could be mined within GeneNetwork. Funding provided by Juvenile Diabetes Research Foundation Grant (VMT), Research to Prevent Blindness Award (PI: James C. Fleming), National Eye Institute Vision Core Grant (PI: Dianna Johnson), National Eye Institute EY021200 (MMJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica M. Jablonski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chintalapudi, S.R., Jablonski, M.M. (2017). Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics