Skip to main content

Measurement of Force-Dependent Release Rates of Cytoskeletal Motors

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

  • 3273 Accesses

Abstract

Optical tweezers permit measuring motor–filament rupture forces with piconewton sensitivity. For deeper structural and mechanistic understanding of motors, different structural constraints can be induced by pulling motor proteins at various positions and manipulating the direction of the exerted force. Here, we present an optical-trapping approach to investigate the effect of the magnitude and direction of tension applied to the linker element of cytoskeletal motors on motor–filament interactions. Using this approach, force-dependent microtubule release rates of monomeric kinesins can be directly measured by pulling on kinesin’s “neck linker” with a constant force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696. doi:10.1038/nrm2774

    Article  CAS  Google Scholar 

  2. Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58:189–200. doi:10.1002/neu.10314

    Article  CAS  Google Scholar 

  3. Belyy V, Yildiz A (2014) Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 588:3520–3525. doi:10.1016/j.febslet.2014.05.040

    Article  CAS  Google Scholar 

  4. Hua W, Young EC, Fleming ML, Gelles J (1997) Coupling of kinesin steps to ATP hydrolysis. Nature 388:390–393. doi:10.1038/41118

    Article  CAS  Google Scholar 

  5. Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390. doi:10.1038/41111

    Article  CAS  Google Scholar 

  6. Guydosh NR, Block SM (2006) Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci U S A 103:8054–8059. doi:10.1073/pnas.0600931103

    Article  CAS  Google Scholar 

  7. Shastry S, Hancock WO (2010) Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr Biol 20:939–943. doi:10.1016/j.cub.2010.03.065

    Article  CAS  Google Scholar 

  8. Yildiz A, Tomishige M, Gennerich A, Vale RD (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030–1041. doi:10.1016/j.cell.2008.07.018

    Article  CAS  Google Scholar 

  9. Clancy BE, Behnke-Parks WM, Andreasson JOL et al (2011) A universal pathway for kinesin stepping. Nat Struct Mol Biol 18:1020–1027. doi:10.1038/nsmb.2104

    Article  CAS  Google Scholar 

  10. Rosenfeld SS, Jefferson GM, King PH (2001) ATP reorients the neck linker of kinesin in two sequential steps. J Biol Chem 276:40167–40174. doi:10.1074/jbc.M103899200

    Article  CAS  Google Scholar 

  11. Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci U S A 104:2175–2180. doi:10.1073/pnas.0610939104

    Article  CAS  Google Scholar 

  12. Dogan MY, Can S, Cleary FB et al (2016) Kinesin’s front head is gated by the backward orientation of its neck linker. Cell Rep 10:1967–1973. doi:10.1016/j.celrep.2015.02.061

    Article  Google Scholar 

  13. Cleary FB, Dewitt MA, Bilyard T et al (2014) Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat Commun 5:4587. doi:10.1038/ncomms5587

    Article  CAS  Google Scholar 

  14. Guydosh NR, Block SM (2009) Direct observation of the binding state of the kinesin head to the microtubule. Nature 461:125–128. doi:10.1038/nature08259

    Article  CAS  Google Scholar 

  15. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105:15755–15760. doi:10.1073/pnas.0806085105

    Article  CAS  Google Scholar 

  16. Capitanio M, Canepari M, Maffei M et al (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9:1013–1019. doi:10.1038/nmeth.2152

    Article  CAS  Google Scholar 

  17. Nicholas MP, Berger F, Rao L et al (2015) Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc Natl Acad Sci U S A 112:6371–6376. doi:10.1073/pnas.1417422112

    Article  CAS  Google Scholar 

  18. Hyman AA (1991) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J Cell Sci Suppl 14:125–127

    Article  CAS  Google Scholar 

  19. Rice S, Lin AW, Safer D et al (1999) A structural change in the kinesin motor protein that drives motility. Nature 402:778–784. doi:10.1038/45483

    Article  CAS  Google Scholar 

  20. Mori T, Vale RD, Tomishige M (2007) How kinesin waits between steps. Nature 450:750–754. doi:10.1038/nature06346

    Article  CAS  Google Scholar 

  21. Tomishige M, Stuurman N, Vale RD (2006) Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13:887–894. doi:10.1038/nsmb1151

    Article  CAS  Google Scholar 

  22. Stock MF, Hackney DD (2001) Expression of kinesin in Escherichia coli. Methods Mol Biol 164:43–48

    CAS  Google Scholar 

  23. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  CAS  Google Scholar 

  24. Tomishige M, Vale RD (2000) Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J Cell Biol 151:1081–1092

    Article  CAS  Google Scholar 

  25. Belyy V, Hendel NL, Chien A, Yildiz A (2014) Cytoplasmic dynein transports cargos via load-sharing between the heads. Nat Commun 5:5544. doi:10.1038/ncomms6544

    Article  CAS  Google Scholar 

  26. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835. doi:10.1529/biophysj.107.117689

    Article  CAS  Google Scholar 

  27. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi:10.1063/1.1785844

    Article  CAS  Google Scholar 

  28. Visscher K, Block SM (1998) Versatile optical traps with feedback control. Methods Enzymol 298:460–489

    Article  CAS  Google Scholar 

  29. Schäffer E, Nørrelykke SF, Howard J (2007) Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23:3654–3665. doi:10.1021/la0622368

    Article  Google Scholar 

  30. Kalafut B, Visscher K (2008) An objective, model-independent method for detection of non-uniform steps in noisy signals. Comput Phys Commun 179:716–723. doi:10.1016/j.cpc.2008.06.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Belyy, for helpful discussions. This work was supported by a grant from the NIH (GM094522) and the NSF (MCB-1055017) to AY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yildiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Can, S., Yildiz, A. (2017). Measurement of Force-Dependent Release Rates of Cytoskeletal Motors. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics