Skip to main content

Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Kinetochores are large multiprotein complexes that drive mitotic chromosome movements by mechanically coupling them to the growing and shortening tips of spindle microtubules. Kinetochores are also regulatory hubs, somehow sensing when they are erroneously attached and, in response, releasing their incorrect attachments and generating diffusible wait signals to delay anaphase until proper attachments can form. The remarkable ability of a kinetochore to sense and respond to its attachment status might stem from attachment- or tension-dependent changes in the structural arrangement of its core subcomplexes. However, direct tests of the relationship between attachment, tension, and core kinetochore structure have not previously been possible because of the difficulties of applying well-controlled forces and determining unambiguously the attachment status of individual kinetochores in vivo. The recent purification of native yeast kinetochores has enabled in vitro optical trapping-based assays of kinetochore tip-coupling and, in separate experiments, fluorescence imaging of single kinetochore particles. Here we introduce a dual instrument, combining optical trapping with multicolor total internal reflection fluorescence (TIRF) imaging, to allow kinetochore structure to be monitored directly with nanometer precision while mechanical tension is simultaneously applied. Our instrument incorporates differential interference contrast (DIC) imaging as well, to minimize the photo-bleaching of fluorescent tags during preparative bead and microtubule manipulations. A simple modification also allows the trapping laser to be easily converted into a real-time focus detection and correction system. Using this combined instrument, the distance between specific subcomplexes within a single kinetochore particle can be measured with 2-nm precision after 50 s observation time, or with 11-nm precision at 1 s temporal resolution. While our instrument was constructed specifically for studying kinetochores, it should also be useful for studying other filament-binding protein complexes, such as spindle poles, cortical microtubule attachments, focal adhesions, or other motor–cytoskeletal junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  Google Scholar 

  2. Moffitt JR, Chemla YR, Smith SB et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  3. Kapanidis AN, Strick T (2009) Biology, one molecule at a time. Trends Biochem Sci 34:234–243

    Article  CAS  Google Scholar 

  4. Lang MJ, Asbury CL, Shaevitz JW et al (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83:491–501

    Article  CAS  Google Scholar 

  5. Blehm BH, Selvin PR (2014) Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact. Chem Rev 114:3335–3352

    Article  CAS  Google Scholar 

  6. Korten T, Nitzsche B, Gell C et al (2011) Fluorescence imaging of single kinesin motors on immobilized microtubules. Methods Mol Biol 783:121–137

    Article  CAS  Google Scholar 

  7. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246

    Article  CAS  Google Scholar 

  8. Gennerich A, Reck-Peterson SL (2011) Probing the force generation and stepping behavior of cytoplasmic dynein. Methods Mol Biol 783:63–80

    Article  CAS  Google Scholar 

  9. Vanzi F, Capitanio M, Sacconi L et al (2006) New techniques in linear and non-linear laser optics in muscle research. J Muscle Res Cell Motil 27:469–479

    Article  CAS  Google Scholar 

  10. Ketelaar T, van der Honing HS, Emons AM (2010) Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers. Biochem Soc Trans 38:823–828

    Article  CAS  Google Scholar 

  11. Sommese RF, Sung J, Nag S et al (2013) Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function. Proc Natl Acad Sci U S A 110:12607–12612

    Article  CAS  Google Scholar 

  12. Mehta AD, Rief M, Spudich JA et al (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695

    Article  CAS  Google Scholar 

  13. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    Article  CAS  Google Scholar 

  14. Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176

    Article  CAS  Google Scholar 

  15. Perkins TT (2014) Ångström-precision optical traps and applications. Annu Rev Biophys 43:279–302

    Article  CAS  Google Scholar 

  16. Heller I, Hoekstra TP, King GA et al (2014) Optical tweezers analysis of DNA–protein complexes. Chem Rev 114:3087–3119

    Article  CAS  Google Scholar 

  17. Padawer J (1968) The Nomarski interference-contrast microscope: an experimental basis for image interpretation. J R Microsc Soc 88:305–349

    Article  CAS  Google Scholar 

  18. Allen RD, Allen NS, Travis JL (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil 1:291–302

    Article  CAS  Google Scholar 

  19. Walker RA, O’Brien ET, Pryer NK et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  Google Scholar 

  20. Elting MW, Spudich JA (2012) Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors. Dev Cell 23:1084–1091

    Article  CAS  Google Scholar 

  21. Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  CAS  Google Scholar 

  22. Swoboda M, Grieb MS, Hahn S et al (2014) Measuring two at the same time: combining magnetic tweezers with single-molecule FRET. EXS 105:253–276

    CAS  Google Scholar 

  23. Savinov A, Perez CF, Block SM (2014) Single-molecule studies of riboswitch folding. Biochim Biophys Acta 1839:1030–1045

    Article  CAS  Google Scholar 

  24. Hohng S, Lee S, Lee J et al (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem Soc Rev 43:1007–1013

    Article  CAS  Google Scholar 

  25. Salmon E, Tran P (1998) High-resolution video-enhanced differential interference contrast (VE-DIC) light microscopy. Methods Cell Biol 56:153–185

    Article  CAS  Google Scholar 

  26. Grishchuk EL, Molodtsov MI, Ataullakhanov FI et al (2005) Force production by disassembling microtubules. Nature 438:384–388

    Article  CAS  Google Scholar 

  27. Driver JW, Powers AF, Sarangapani KK et al (2014) Measuring kinetochore-microtubule interaction in vitro. Methods Enzymol 540:321–337

    Article  CAS  Google Scholar 

  28. Yamagishi Y, Sakuno T, Goto Y et al (2014) Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38:185–200

    Article  CAS  Google Scholar 

  29. Cheerambathur DK, Desai A (2014) Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr Opin Cell Biol 26:113–122

    Article  CAS  Google Scholar 

  30. London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–748

    Article  CAS  Google Scholar 

  31. Gorbsky GJ (2015) The spindle checkpoint and chromosome segregation in meiosis. FEBS J 282:2471–2487

    Article  Google Scholar 

  32. Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637

    Article  CAS  Google Scholar 

  33. Pinsky BA, Biggins S (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15:486–493

    Article  CAS  Google Scholar 

  34. Joglekar AP, Bloom KS, Salmon E (2010) Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 22:57–67

    Article  CAS  Google Scholar 

  35. Wan X, O’Quinn RP, Pierce HL et al (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684

    Article  CAS  Google Scholar 

  36. Joglekar AP, Bloom K, Salmon ED (2009) In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 19:694–699

    Article  CAS  Google Scholar 

  37. Maresca TJ, Salmon ED (2009) Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 184:373–381

    Article  CAS  Google Scholar 

  38. Dumont S, Salmon ED, Mitchison TJ (2012) Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 337:355–358

    Article  CAS  Google Scholar 

  39. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  40. Rohrbach A (2005) Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys Rev Lett 95:168102

    Article  Google Scholar 

  41. Dempsey GT, Wang W, Zhuang X (2009) Fluorescence imaging at sub-diffraction-limit resolution with stochastic optical reconstruction microscopy. In: Handbook of single-molecule biophysics. Springer, New York, NY, pp 95–127

    Chapter  Google Scholar 

  42. Churchman LS, Okten Z, Rock RS et al (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102:1419–1423

    Article  CAS  Google Scholar 

  43. Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–651

    Article  CAS  Google Scholar 

  44. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  Google Scholar 

  45. Shaevitz JW (2006) A practical guide to optical trapping. http://genomics.princeton.edu/shaevitzlab/OT_Practicle_Guide.pdf. Accessed 11 January 2016

  46. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101

    Article  Google Scholar 

  47. Akiyoshi B, Sarangapani KK, Powers AF et al (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579

    Article  CAS  Google Scholar 

  48. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  CAS  Google Scholar 

  49. Gilbert SP, Johnson KA (1993) Expression, purification, and characterization of the Drosophila kinesin motor domain produced in Escherichia coli. Biochemistry (Mosc) 32:4677–4684

    Article  CAS  Google Scholar 

  50. Young EC, Berliner E, Mahtani HK et al (1995) Subunit interactions in dimeric kinesin heavy chain derivatives that lack the kinesin rod. J Biol Chem 270:3926–3931

    Article  CAS  Google Scholar 

  51. de Boer E, Rodriguez P, Bonte E et al (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100:7480–7485

    Article  Google Scholar 

  52. Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157:199–203

    Article  CAS  Google Scholar 

  53. Cheeseman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6:a015826

    Article  Google Scholar 

  54. Franck AD, Powers AF, Gestaut DR et al (2007) Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat Cell Biol 9:832–837

    Article  CAS  Google Scholar 

  55. Joglekar AP, Salmon ED, Bloom KS (2008) Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol 85:127–151

    Article  CAS  Google Scholar 

  56. Aravamudhan P, Felzer-Kim I, Gurunathan K et al (2014) Assembling the protein architecture of the budding yeast kinetochore-microtubule attachment using FRET. Curr Biol 24:1437–1446

    Article  CAS  Google Scholar 

  57. Suzuki A, Badger BL, Wan X et al (2014) The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper intrakinetochore stretch. Dev Cell 30:717–730

    Article  CAS  Google Scholar 

  58. Brinkley B, Stubblefield E (1966) The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28–43

    Article  CAS  Google Scholar 

  59. DeLuca JG, Dong Y, Hergert P et al (2005) Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16:519–531

    Article  CAS  Google Scholar 

  60. Gonen S, Akiyoshi B, Iadanza MG et al (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19:925–929

    Article  CAS  Google Scholar 

  61. Asbury CL, Gestaut DR, Powers AF et al (2006) The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci U S A 103:9873–9878

    Article  CAS  Google Scholar 

  62. Powers AF, Franck AD, Gestaut DR et al (2009) The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:865–875

    Article  CAS  Google Scholar 

  63. Sarangapani KK, Akiyoshi B, Duggan NM et al (2013) Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms. Proc Natl Acad Sci U S A 110:7282–7287

    Article  CAS  Google Scholar 

  64. Sarangapani KK, Duro E, Deng Y et al (2014) Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346:248–251

    Article  CAS  Google Scholar 

  65. Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002–R1018

    Article  CAS  Google Scholar 

  66. Maresca TJ, Salmon E (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123:825–835

    Article  CAS  Google Scholar 

  67. Wang Y, Jin F, Higgins R et al (2014) The current view for the silencing of the spindle assembly checkpoint. Cell Cycle 13:1694–1701

    Article  CAS  Google Scholar 

  68. Sofia SJ, Premnath V, Merrill EW (1998) Poly (ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070

    Article  CAS  Google Scholar 

  69. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  Google Scholar 

  70. Collins BE, Ye LF, Duzdevich D et al (2013) DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods Cell Biol 123:217–234

    Article  Google Scholar 

  71. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  Google Scholar 

  72. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  CAS  Google Scholar 

  73. McEwen BF, Dong Y (2009) Releasing the spindle assembly checkpoint without tension. J Cell Biol 184:355–356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Asbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Deng, Y., Asbury, C.L. (2017). Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics