Skip to main content

The Q-System: A Versatile Expression System for Drosophila

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramaekers A, Quan X-J, Hassan BA (2012) Genetically encoded markers for drosophila neuroanatomy. In: The making and un-making of neuronal circuits in Drosophila. Humana Press, Totowa, NJ, pp 49–59

    Chapter  Google Scholar 

  2. Silbering AF, Bell R, Galizia CG, Benton R (2012) Calcium imaging of odor-evoked responses in the Drosophila antennal lobe. J Vis Exp:e2976

    Google Scholar 

  3. Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain, Advances in genetics. Academic, New York, pp 79–143

    Google Scholar 

  4. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  5. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  CAS  PubMed  Google Scholar 

  6. Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    Article  CAS  PubMed  Google Scholar 

  7. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lima SQ, Miesenbböck G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152

    Article  CAS  PubMed  Google Scholar 

  9. Paradis S, Sweeney ST, Davis GW (2001) Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30:737–749

    Article  CAS  PubMed  Google Scholar 

  10. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    Article  CAS  PubMed  Google Scholar 

  11. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708

    Article  CAS  PubMed  Google Scholar 

  12. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  13. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  CAS  PubMed  Google Scholar 

  14. Bello B, Resendez-Perez D, Gehring WJ (1998) Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125:2193–2202

    CAS  PubMed  Google Scholar 

  15. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potter CJ, Luo L (2011) Using the Q system in Drosophila melanogaster. Nat Protoc 6:1105–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science (New York, NY) 302:1765–1768

    Article  CAS  Google Scholar 

  19. Lue NF, Chasman DI, Buchman AR, Kornberg RD (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7:3446–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci 93:6079–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  PubMed  Google Scholar 

  22. Luo L, Lee T, Nardine T, Null B, Reuter J (1999) Using the MARCM system to positively mark mosaic clones in Drosophila. Dros Inf Serv 82:102–105

    Google Scholar 

  23. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  CAS  PubMed  Google Scholar 

  24. del Valle Rodriguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55

    Article  Google Scholar 

  25. Griffin R, Binari R, Perrimon N (2014) Genetic odyssey to generate marked clones in Drosophila mosaics. Proc Natl Acad Sci 111:4756–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  CAS  PubMed  Google Scholar 

  27. Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9:391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ, Parsons MJ, Halpern ME (2013) Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods (San Diego, Calif) 66(3):433–440

    Article  Google Scholar 

  29. Giles NH, Geever RF, Asch DK, Avalos J, Case ME (1991) The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. J Hered 82:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Patel VB, Schweizer M, Dykstra CC, Kushner SR, Giles NH (1981) Genetic organization and transcriptional regulation in the qa gene cluster of Neurospora crassa. Proc Natl Acad Sci 78:5783–5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baum JA, Geever R, Giles NH (1987) Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 7:1256–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huiet L, Giles NH (1986) The qa repressor gene of Neurospora crassa: wild-type and mutant nucleotide sequences. Proc Natl Acad Sci 83:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Bermingham-McDonogh O, Turcotte B, Guarente L (1993) Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. Proc Natl Acad Sci 90:2851–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G (2001) Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 15:1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walters KJ, Dayie KT, Reece RJ, Ptashne M, Wagner G (1997) Structure and mobility of the PUT3 dimer. Nat Struct Mol Biol 4:744–750

    Article  CAS  Google Scholar 

  37. Kraulis PJ, Raine ARC, Gadhavi PL, Laue ED (1992) Structure of the DNA-binding domain of zinc GAL4. Nature 356:448–450

    Article  CAS  PubMed  Google Scholar 

  38. Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414

    Article  CAS  PubMed  Google Scholar 

  39. Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853

    Article  CAS  PubMed  Google Scholar 

  40. Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, Potter CJ (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gill G, Ptashne M (1987) Mutants of GAL4 protein altered in an activation function. Cell 51:121–126

    Article  CAS  PubMed  Google Scholar 

  43. Kramer JM, Staveley BE (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2:43–47

    CAS  PubMed  Google Scholar 

  44. Shearin HK, Macdonald IS, Spector LP, Stowers RS (2014) Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci U S A 109:6626–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Markstein M, Pitsouli C, Villalta C, Celniker SE, Perrimon N (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90:471–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genome. Cell 59:499–509

    Article  CAS  PubMed  Google Scholar 

  49. Bischof J, Basler K (2008) Recombinases and their use in gene activation, gene inactivation, and transgenesis. In: Drosophila. Humana Press, Totowa, NJ, pp 175–195

    Chapter  Google Scholar 

  50. Pitman JL, Huetteroth W, Burke CJ, Krashes MJ, Lai S-L, Lee T, Waddell S (2011) A pair of inhibitory neurons are required to sustain labile memory in the Drosophila mushroom body. Curr Biol 21:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hong W, Mosca TJ, Luo L (2012) Teneurins instruct synaptic partner matching in an olfactory map. Nature 484:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mosca TJ, Luo L (2014) Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 3:03726

    Article  Google Scholar 

  53. Prieto-Godino LL, Diegelmann S, Bate M (2012) Embryonic origin of olfactory circuitry in Drosophila: contact and activity-mediated interactions pattern connectivity in the antennal lobe. PLoS Biol 10:e1001400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang K, Gong J, Wang Q, Li H, Cheng Q, Liu Y, Zeng S, Wang Z (2014) Parallel pathways convey olfactory information with opposite polarities in Drosophila. Proc Natl Acad Sci 111:3164–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Herrera SC, Martín R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9:e1003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parnas M, Lin AC, Huetteroth W, Miesenböck G (2013) Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 79:932–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li H, Li Y, Lei Z, Wang K, Guo A (2013) Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging. Proc Natl Acad Sci 110:12084–12089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang L, Li Y, Potter CJ, Yizhar O, Deisseroth K, Tsien RW, Luo L (2013) GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. Neuron 79:917–931

    Article  CAS  PubMed  Google Scholar 

  60. Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S (2014) Decoding odor quality and intensity in the Drosophila brain. eLife 3:e04147

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L (2015) A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat Neurosci 18:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Venken KJT, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C-C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pérez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. eLife 2:01004

    Article  Google Scholar 

  66. Diao F, Ironfield H, Diao F, Luan H, Shropshire W, Ewer J, Marr E, Potter CJ, Landgraf M, White BH (2015) Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Rep 10:1410–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Griffin R, Sustar A, Bonvin M, Binari R, del Valle Rodriguez A, Hohl AM, Bateman JR, Villalta C, Heffern E, Grunwald D et al (2009) The twin spot generator for differential Drosophila lineage analysis. Nat Methods 6:600–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu H-H, Chen C-H, Shi L, Huang Y, Lee T (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, Patananan AN, Sitz D, Tran P, Do M-T et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266

    Article  CAS  PubMed  Google Scholar 

  71. Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kosman D, Small S (1997) Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. Development 124:1343–1354

    CAS  PubMed  Google Scholar 

  73. Stockinger P, Kvitsiani D, Rotkopf S, Tirián L, Dickson BJ (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121:795–807

    Article  CAS  PubMed  Google Scholar 

  74. Petersen LK, Stowers RS (2011) A gateway MultiSite recombination cloning toolkit. PLoS One 6:e24531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stowers RS (2011) An efficient method for recombineering GAL4 and QF drivers. Fly 5:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shearin HK, Dvarishkis AR, Kozeluh CD, Stowers RS (2013) Expansion of the gateway multisite recombination cloning toolkit. PLoS One 8:e77724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang YV, Ni J, Montell C (2013) The molecular basis for attractive salt-taste coding in Drosophila. Science 340:1334–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zielke N, Korzelius J, van Straaten M, Bender K, Schuhknecht GFP, Dutta D, Xiang J, Edgar BA (2014) Fly-FUCCI: a versatile tool for studying cell proliferation in complex tissues. Cell Rep 7:588–598

    Article  CAS  PubMed  Google Scholar 

  79. Cavanaugh DJ, Geratowski JD, Wooltorton JRA, Spaethling JM, Hector CE, Zheng X, Johnson EC, Eberwine JH, Sehgal A (2014) Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell 157:689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chun-Chieh Lin, Qili Liu, Sha Liu, Darya Task and Olga Markova for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Potter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Riabinina, O., Potter, C.J. (2016). The Q-System: A Versatile Expression System for Drosophila . In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics