Skip to main content

Analysis of Axonemal Assembly During Ciliary Regeneration in Chlamydomonas

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

Chlamydomonas reinhardtii is an outstanding model genetic organism for study of assembly of cilia. Here, methods are described for synchronization of ciliary regeneration in Chlamydomonas to analyze the sequence in which ciliary proteins assemble. In addition, the methods described allow analysis of the mechanisms involved in regulation of ciliary length, the proteins required for ciliary assembly, and the temporal expression of genes encoding ciliary proteins. Ultimately, these methods can contribute to discovery of conserved genes that when defective lead to abnormal ciliary assembly and human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drummond IA (2012) Cilia functions in development. Curr Opin Cell Biol 24(1):24–30. doi:10.1016/j.ceb.2011.12.007, S0955-0674(11)00169-4 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  2. Satir P, Heuser T, Sale WS (2014) A structural basis for how motile cilia beat. Bioscience 64(12):1073–1083. doi:10.1093/Biosci/Biu180

    Article  PubMed Central  Google Scholar 

  3. Brown JM, Witman GB (2014) Cilia and diseases. Bioscience 64(12):1126–1137. doi:10.1093/Biosci/Biu174

    Article  PubMed Central  Google Scholar 

  4. Oh EC, Katsanis N (2012) Cilia in vertebrate development and disease. Development 139(3):443–448. doi:10.1242/dev.050054

    Article  CAS  PubMed Central  Google Scholar 

  5. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364(16):1533–1543. doi:10.1056/NEJMra1010172

    Article  CAS  PubMed Central  Google Scholar 

  6. Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197(6):697–709. doi:10.1083/Jcb.201111146

    Article  CAS  PubMed Central  Google Scholar 

  7. Kim S, Dynlacht BD (2013) Assembling a primary cilium. Curr Opin Cell Biol 25(4):506–511. doi:10.1016/J.Ceb.2013.04.011

    Article  CAS  PubMed Central  Google Scholar 

  8. Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83(2):30–42. doi:10.1016/J.Diff.2011.11.015

    Article  Google Scholar 

  9. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12(4):222–234. doi:10.1038/nrm3085

    Article  CAS  Google Scholar 

  10. Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127(4):1500–1507

    Article  CAS  PubMed Central  Google Scholar 

  11. Dutcher SK (2014) The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 71(2):79–94. doi:10.1002/cm.21157

    Article  Google Scholar 

  12. Lin H, Dutcher SK (2015) Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 127:349–386. doi:10.1016/bs.mcb.2014.12.001, S0091-679X(14)00046-6 [pii]

    Article  Google Scholar 

  13. Stolc V, Samanta MP, Tongprasit W, Marshall WF (2005) Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc Natl Acad Sci U S A 102(10):3703–3707

    Article  CAS  PubMed Central  Google Scholar 

  14. Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61. doi:10.1016/S0070-2153(08)00802-8, S0070-2153(08)00802-8 [pii]

    Article  CAS  Google Scholar 

  15. Awata J, Takada S, Standley C, Lechtreck KF, Bellve KD, Pazour GJ, Fogarty KE, Witman GB (2014) NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 127(21):4714–4727. doi:10.1242/Jcs.155275

    Article  PubMed Central  Google Scholar 

  16. Reiter JF, Blacque OE, Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13(7):608–618. doi:10.1038/embor.2012.73, embor201273 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  17. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190(5):927–940. doi:10.1083/jcb.201006105, jcb.201006105 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  18. Kamiya R, Yagi T (2014) Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zool Sci 31(10):633–644. doi:10.2108/Zs140066

    Article  Google Scholar 

  19. Kobayashi D, Takeda H (2012) Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation 83(2):S23–S29. doi:10.1016/j.diff.2011.11.009, S0301-4681(11)00199-X [pii]

    Article  CAS  Google Scholar 

  20. Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS (2014) The ciliary inner dynein arm, I1 Dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking. Cytoskeleton 71(10):573–586. doi:10.1002/Cm.21192

    Article  CAS  PubMed Central  Google Scholar 

  21. Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR (2008) ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 183(2):313–322

    Article  CAS  PubMed Central  Google Scholar 

  22. Desai PB, Freshour JR, Mitchell DR (2015) Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton 72(1):16–28. doi:10.1002/Cm.21206

    Article  CAS  PubMed Central  Google Scholar 

  23. Remillard SP, Witman GB (1982) Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas. J Cell Biol 93(3):615–631

    Article  CAS  Google Scholar 

  24. Lefebvre PA (1995) Flagellar amputation and regeneration in Chlamydomonas. Methods Cell Biol 47:3–7

    Article  CAS  Google Scholar 

  25. Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187(1):81–89. doi:10.1083/jcb.200812084, jcb.200812084 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  26. Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi K, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF (2012) The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199(1):151–167. doi:10.1083/jcb.201206068, jcb.201206068 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  27. Dentler W (2013) A role for the membrane in regulating Chlamydomonas flagellar length. PLoS One 8(1), e53366. doi:10.1371/journal.pone.0053366, PONE-D-12-27278 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  28. Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176(6):819–829. doi:10.1083/jcb.200610022, jcb.200610022 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  29. Hilton LK, Gunawardane K, Kim JW, Schwarz MC, Quarmby LM (2013) The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr Biol 23(22):2208–2214. doi:10.1016/J.Cub.2013.09.038

    Article  CAS  Google Scholar 

  30. Lefebvre PA (2009) Flagellar Length Control. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3, 2nd edn. Academic, Amsterdam, pp 115–129. doi:10.1016/B978-0-12-370873-1.00042-3

    Chapter  Google Scholar 

  31. Quarmby LM (2004) Cellular deflagellation. Int Rev Cytol 233:47–91. doi:10.1016/S0074-7696(04)33002-0, S0074769604330020 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Parker JD, Hilton LK, Diener DR, Rasi MQ, Mahjoub MR, Rosenbaum JL, Quarmby LM (2010) Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton (Hoboken) 67(7):425–430. doi:10.1002/cm.20454

    Article  Google Scholar 

  33. Quarmby L (2009) Deflagellation. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3. Academic, Amsterdam, pp 43–69. doi:10.1016/B978-0-12-370873-1.00040-X

    Chapter  Google Scholar 

  34. Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Exp Cell Res 97:83–91

    Article  CAS  PubMed  Google Scholar 

  35. Diener DR, Lupetti P, Rosenbaum JL (2015) Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr Biol 25(3):379–384. doi:10.1016/J.Cub.2014.11.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silflow CD, Rosenbaum JL (1981) Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell 24(1):81–88

    Article  CAS  PubMed  Google Scholar 

  37. Johnson KA, Rosenbaum JL (1992) Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119(6):1605–1611

    Article  CAS  PubMed  Google Scholar 

  38. Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF (2015) Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208(2):223–237. doi:10.1083/Jcb.201409036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang YW, Pang YN, Wu Q, Hu ZF, Han X, Xu YS, Deng HT, Pan JM (2014) FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev Cell 30(5):585–597. doi:10.1016/J.Devcel.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  40. Avasthi P, Onishi M, Karpiak J, Yamamoto R, Mackinder L, Jonikas MC, Sale WS, Shoichet B, Pringle JR, Marshall WF (2014) Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr Biol 24(17):2025–2032. doi:10.1016/J.Cub.2014.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tammana TVS, Tammana D, Diener DR, Rosenbaum J (2013) Centrosomal protein CEP104 (Chlamydomonas FAP256) moves to the ciliary tip during ciliary assembly. J Cell Sci 126(21):5018–5029. doi:10.1242/Jcs.133439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alford LM, Mattheyses AL, Hunter EL, Lin H, Dutcher SK, Sale WS (2013) The Chlamydomonas mutant pf27 reveals novel features of ciliary radial spoke assembly. Cytoskeleton (Hoboken) 70(12):804–818. doi:10.1002/cm.21144

    Article  CAS  Google Scholar 

  43. Witman GB (1986) Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol 134:280–290

    Article  CAS  PubMed  Google Scholar 

  44. Huang B, Rifkin MR, Luck DJ (1977) Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J Cell Biol 72(1):67–85

    Article  CAS  PubMed  Google Scholar 

  45. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54(6):1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sager R, Granick S (1953) Nutritional studies with Chlamydomonas reinhardtii. Ann N Y Acad Sci 466:18–30

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (GM051173, WSS; Training Grant K12 GM000680, LMA; Training Grant 5T32 GM00836725, ELH) and the American Heart Association (14PRE19510013, ELH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfield S. Sale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hunter, E.L., Sale, W.S., Alford, L.M. (2016). Analysis of Axonemal Assembly During Ciliary Regeneration in Chlamydomonas . In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics