Skip to main content

Tol2-Mediated Delivery of miRNAs to the Chicken Otocyst Using Plasmid Electroporation

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

The avian embryo has a well-documented history as a model system for the study of neurogenesis, morphogenesis, and cell fate specification. This includes studies of the chicken inner ear that employ in ovo electroporation, in conjunction with the Tol2 system, to yield robust long-term transgene expression. Capitalizing on the success of this delivery method, we describe a modified version of the Tol2 expression vector that readily accepts the insertion of a microRNA-encoding artificial intron. This offers a strategy to investigate the possible roles of different candidate microRNAs in ear development by overexpression. Here, we describe the general design of this modified vector and the electroporation procedure. This approach is expected to facilitate phenotypic screening of candidate miRNAs to explore their bioactivity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol 368:620–630

    Article  CAS  PubMed  Google Scholar 

  2. Stevens CB, Davies AL, Battista S et al (2003) Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261:149–164

    Article  CAS  PubMed  Google Scholar 

  3. Chang W, Brigande JV, Fekete DM, Wu DK (2004) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131:4201–4211

    Article  CAS  PubMed  Google Scholar 

  4. Sienknecht UJ, Anderson BK, Parodi RM et al (2011) Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates. Dev Biol 352:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Federspiel MJ, Hughes SH (1997) Retroviral gene delivery. Methods Cell Biol 52:179–214

    Article  CAS  PubMed  Google Scholar 

  6. Hughes SH (2004) The RCAS vector system. Folia Biol 50:107–119

    CAS  Google Scholar 

  7. Hughes SH. The RCAS system. http://home.ncifcrf.gov/hivdrp/RCAS/index.html

  8. Morgan BA, Fekete DM (1996) Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol 51:185–218

    Article  CAS  PubMed  Google Scholar 

  9. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  10. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  11. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610

    CAS  PubMed  Google Scholar 

  12. Zhang KD, Stoller ML, Fekete DM (2015) Expression and misexpression of the miR-183 family in the developing hearing organ of the chicken. PLoS One 10(7):e0132796. doi: 10.1371

    Google Scholar 

  13. Neves J, Parada C, Chamizo M, Giráldez F (2011) Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 138:735–744

    Article  CAS  PubMed  Google Scholar 

  14. Neves J, Uchikawa M, Bigas A, Giraldez F (2012) The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One 7:e30871. doi:10.1371/journal.pone.0030871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Battisti AC, Fantetti KN, Moyers BA, Fekete DM (2014) A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2. Hear Res 310:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krull CE (2004) A primer on using in ovo electroporation to analyze gene. Dev Dyn 229:433–439

    Article  CAS  PubMed  Google Scholar 

  17. Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380

    Article  CAS  PubMed  Google Scholar 

  18. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  PubMed  Google Scholar 

  19. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8:1–10

    Article  Google Scholar 

  20. Sato Y, Kasai T, Nakagawa S et al (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  CAS  PubMed  Google Scholar 

  21. Freeman SD, Daudet N (2012) Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear. PLoS One 7:15–17

    Google Scholar 

  22. Costa A, Sanchez-Guardado L, Juniat S et al (2015) Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 142: 1948–1959

    Article  CAS  PubMed  Google Scholar 

  23. Freeman S, Chrysostomou E, Kawakami K et al (2012) Tol2-mediated gene transfer and in ovo electroporation of the otic placode: a powerful and versatile approach for investigating embryonic development and regeneration of the chicken inner ear. Methods Mol Biol 916:373–385

    Article  Google Scholar 

  24. Zelarayan LC, Vendrell V, Zelarayan LC et al (2007) Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Dev Biol 308:379–391

    Article  CAS  PubMed  Google Scholar 

  25. Stoller ML, Chang HC, Fekete DM (2013) Bicistronic gene transfer tools for delivery of miRNAs and protein coding sequences. Int J Mol Sci 14:18239–18255

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin SL, Chang D, Wu DY, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760

    Article  CAS  PubMed  Google Scholar 

  27. Lin S-L, Ying S-Y (2004) New drug design for gene therapy—taking advantage of introns. Lett Drug Des Discov 1:256–262

    Article  CAS  Google Scholar 

  28. Du G, Yonekubo J, Zeng Y et al (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273:5421–5427

    Article  CAS  PubMed  Google Scholar 

  29. Karwacz K, Bricogne C, MacDonald D et al (2011) PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 3:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arce F, Breckpot K, Stephenson H et al (2011) Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum 63:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24:138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Griffiths-Jones S, Grocok RS, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korn MJ, Cramer KS (2007) Windowing chicken eggs for developmental studies. J Vis Exp e306. doi: 10.3791/306

  34. Chang W, Lin Z, Kulessa H et al (2008) Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLoS Genet 4:e1000050. doi:10.1371/journal.pgen.1000050

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alsina B, Abello G, Ulloa E et al (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134

    Article  CAS  PubMed  Google Scholar 

  36. Daudet N, Lewis J (2005) Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551

    Article  CAS  PubMed  Google Scholar 

  37. Evsen L, Sugahara S, Uchikawa M et al (2013) Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. J Neurosci 33: 3879–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ulrike Sienknecht for providing a protocol for electroporation electrode fabrication and Kaidi D. Zhang for converting pTol2-GFP into a Gateway® destination vector. We thank Vidhya Munnamalai for helping with figure preparation, Andrea Battisti for piloting electroporation techniques in our lab, and M. Katie Scott for reviewing the manuscript. Support from the NIDCD (R01DC002756 to D.M.F. and F31DC0011687 to M.L.S.) is gratefully acknowledged. Plasmid constructions were aided by data obtained from the DNA sequencing facility at Purdue University supported by P30 CA023168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Fekete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stoller, M.L., Fekete, D.M. (2016). Tol2-Mediated Delivery of miRNAs to the Chicken Otocyst Using Plasmid Electroporation. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics