Skip to main content

A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Abstract

When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97

    Article  CAS  PubMed  Google Scholar 

  2. Holzinger ER, Ritchie MD (2012) Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies. Pharmacogenomics 13:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reif DM, White BC, Moore JH (2004) Integrated analysis of genetic, genomic and proteomic data. Expert Rev Proteomics 1:67–75

    Article  CAS  PubMed  Google Scholar 

  4. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J (2009) Data integration in genetics and genomics: methods and challenges. Hum Genom Proteomics. DOI: 10.4061/2009/869093

  5. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shon J, Abernethy DR (2014) Application of systems pharmacology to explore mechanisms of hepatotoxicity. Clin Pharmacol Ther 96:536–537

    Article  CAS  PubMed  Google Scholar 

  7. Howell BA, Siler SQ, Watkins PB (2014) Use of a systems model of drug-induced liver injury (DILIsym((R))) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Toxicol Lett 226:163–172

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya S, Shoda LK, Zhang Q, Woods CG, Howell BA, Siler SQ, Woodhead JL, Yang Y, McMullen P, Watkins PB, Andersen ME (2012) Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front Physiol 3:462

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703

    Article  PubMed  Google Scholar 

  10. Cui Y, Paules RS (2010) Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11:573–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giuliano KA, Gough AH, Taylor DL, Vernetti LA, Johnston PA (2010) Early safety assessment using cellular systems biology yields insights into mechanisms of action. J Biomol Screen 15:783–797

    Article  CAS  PubMed  Google Scholar 

  12. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  PubMed  Google Scholar 

  13. Senior JR (2008) What is idiosyncratic hepatotoxicity? What is it not? Hepatology 47:1813–1815

    Article  PubMed  Google Scholar 

  14. Holmes AM, Creton S, Chapman K (2010) Working in partnership to advance the 3Rs in toxicity testing. Toxicology 267:14–19

    Article  CAS  PubMed  Google Scholar 

  15. Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I (2013) In vitro models for liver toxicity testing. Toxicol Res (Camb) 2:23–39

    Article  CAS  Google Scholar 

  16. Hendrickx DM, Aerts HJ, Caiment F, Clark D, Ebbels TM, Evelo CT, Gmuender H, Hebels DG, Herwig R, Hescheler J, Jennen DG, Jetten MJ, Kanterakis S, Keun HC, Matser V, Overington JP, Pilicheva E, Sarkans U, Segura-Lepe MP, Sotiriadou I, Wittenberger T, Wittwehr C, Zanzi A, Kleinjans JC (2015) diXa: a data infrastructure for chemical safety assessment. Bioinformatics 31:1505–1507

    Article  PubMed  Google Scholar 

  17. Bolton EE, Chen J, Kim S, Han L, He S, Shi W, Simonyan V, Sun Y, Thiessen PA, Wang J, Yu B, Zhang J, Bryant SH (2011) PubChem3D: a new resource for scientists. J Cheminform 3:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim S, Bolton EE, Bryant SH (2012) Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis. J Cheminform 4:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim S, Bolton EE, Bryant SH (2011) PubChem3D: biologically relevant 3-D similarity. J Cheminformatics 3:26

    Article  CAS  Google Scholar 

  20. Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: predicting biological targets from chemical structure. Drug Discov Today Tech 3:413–421

    Article  Google Scholar 

  21. Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46:1124–1133

    Article  CAS  PubMed  Google Scholar 

  22. Southan C, Sitzmann M, Muresan S (2013) Comparing the chemical structure and protein content of ChEMBL, DrugBank, human metabolome database and the therapeutic target database. Mol Informat 32:881–897

    Article  CAS  Google Scholar 

  23. Mugumbate G, Abrahams KA, Cox JA, Papadatos G, van Westen G, Lelievre J, Calus ST, Loman NJ, Ballell L, Barros D, Overington JP, Besra GS (2015) Mycobacterial dihydrofolate reductase inhibitors identified using chemogenomic methods and in vitro validation. PLoS One 10:e0121492

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  25. ChEMBL Team (2013) ChEMBL release 17. DOI: 10.6019/CHEMBL.database.17

  26. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  PubMed  Google Scholar 

  27. Kreyszig E (1979) Applied mathematics. Wiley Press, New York

    Google Scholar 

  28. Caiment F, Tsamou M, Jennen D, Kleinjans J (2014) Assessing compound carcinogenicity in vitro using connectivity mapping. Carcinogenesis 35:201–207

    Article  CAS  PubMed  Google Scholar 

  29. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Perez-Jurado LA, Lehrach H, Herwig R (2011) Meta-analysis of heterogeneous down syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 12:229

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rasche A, Al-Hasani H, Herwig R (2008) Meta-analysis approach identifies candidate genes and associated molecular networks for type-2 diabetes mellitus. BMC Genomics 9:310

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  33. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rasche A, Yildirimman R, Herwig R (2009) Integrative analysis of microarray data: a path for systems toxicology, General, applied and systems toxicology. Wiley, Hoboken, NJ

    Google Scholar 

  35. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo L, Fang H, Collins J, Fan XH, Dial S, Wong A, Mehta K, Blann E, Shi L, Tong W, Dragan YP (2006) Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor alpha agonists. BMC Bioinformatics 7(Suppl 2):S18

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S, Fukutomi T, Kimura G, Yokoyama S (2009) On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 205:413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanke T, Dehm F, Liening S, Popella SD, Maczewsky J, Pillong M, Kunze J, Weinigel C, Barz D, Kaiser A, Wurglics M, Lammerhofer M, Schneider G, Sautebin L, Schubert-Zsilavecz M, Werz O (2013) Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo. J Med Chem 56:9031–9044

    Article  CAS  PubMed  Google Scholar 

  39. Seo M, Inoue I, Ikeda M, Nakano T, Takahashi S, Katayama S, Komoda T (2008) Statins activate human PPARalpha promoter and increase PPARalpha mRNA expression and activation in HepG2 cells. PPAR Res 2008:316306

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G, Percevault F, Fruchart JC, Dombrowicz D, Glineur C, Staels B (2006) Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ Res 98:361–369

    Article  CAS  PubMed  Google Scholar 

  41. Wierzbicki AS, Mikhailidis DP, Wray R, Schacter M, Cramb R, Simpson WG, Byrne CB (2003) Statin-fibrate combination: therapy for hyperlipidemia: a review. Curr Med Res Opin 19:155–168

    Article  CAS  PubMed  Google Scholar 

  42. Barnett J, Viljoen A, Wierzbicki AS (2013) The need for combination drug therapies in patients with complex dyslipidemia. Curr Cardiol Rep 15:391

    Article  PubMed  Google Scholar 

  43. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. http://www.ncbi.nlm.nih.gov/pubmed/20798865

  44. Lampen A, Carlberg C, Nau H (2001) Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives. Eur J Pharmacol 431:25–33

    Article  CAS  PubMed  Google Scholar 

  45. Ren H, Aleksunes LM, Wood C, Vallanat B, George MH, Klaassen CD, Corton JC (2010) Characterization of peroxisome proliferator-activated receptor alpha – independent effects of PPARalpha activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutive-activated receptor. Toxicol Sci 113:45–59

    Article  CAS  PubMed  Google Scholar 

  46. Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263

    Article  CAS  PubMed  Google Scholar 

  47. Jia R, Cao LP, Du JL, Wang JH, Liu YJ, Jeney G, Xu P, Yin GJ (2014) Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). Aquat Toxicol 152:11–19

    Article  CAS  PubMed  Google Scholar 

  48. Jimenez-Lopez JM, Cederbaum AI (2005) CYP2E1-dependent oxidative stress and toxicity: role in ethanol-induced liver injury. Expert Opin Drug Metab Toxicol 1:671–685

    Article  CAS  PubMed  Google Scholar 

  49. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176

    Article  CAS  PubMed  Google Scholar 

  50. Yang JW, Shin JS, Lee JJ, Chang HI, Kim CW (2001) In vitro model using mouse hepatocytes for study of alcohol stress. Biosci Biotechnol Biochem 65:1528–1533

    Article  CAS  PubMed  Google Scholar 

  51. Kwolek-Mirek, M., R. Zadrag-Tecza, S. Bednarska and G. Bartosz (2014) Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1. Cell Biochem Biophys 71:1525–1536

    Google Scholar 

  52. Kujawska M, Ignatowicz E, Murias M, Ewertowska M, Mikolajczyk K, Jodynis-Liebert J (2009) Protective effect of red beetroot against carbon tetrachloride- and N-nitrosodiethylamine-induced oxidative stress in rats. J Agric Food Chem 57:2570–2575

    Article  CAS  PubMed  Google Scholar 

  53. Mo Q, Wang S, Seshan VE, Olshen AB, Schultz N, Sander C, Powers RS, Ladanyi M, Shen R (2013) Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A 110:4245–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu B, Bai R, Kennett MJ, Kang BH, Gonzalez FJ, Peters JM (2010) Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-beta/delta and inhibition of cyclooxygenase 2. Mol Cancer Ther 9:3267–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhir A, Naidu PS, Kulkarni SK (2007) Neuroprotective effect of nimesulide, a preferential COX-2 inhibitor, against pentylenetetrazol (PTZ)-induced chemical kindling and associated biochemical parameters in mice. Seizure 16:691–697

    Article  PubMed  Google Scholar 

  56. Ghio L, Cervetti A, Respino M, Belvederi Murri M, Amore M (2014) Management and treatment of gamma butyrolactone withdrawal syndrome: a case report and review. J Psychiatr Pract 20:294–300

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under its 7th Framework Programme with the Grant “diXa” (283775) and by the European Chemical Industry Council - Long-Range Research Initiative (CEFIC-LRI) with the Grant “DECO2” (AIMT4-UM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennie G. A. J. Hebels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hebels, D.G.A.J., Rasche, A., Herwig, R., van Westen, G.J.P., Jennen, D.G.J., Kleinjans, J.C.S. (2016). A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics