Skip to main content

Collection of Samples for DNA Analysis

  • Protocol
  • First Online:
Forensic DNA Typing Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1420))

Abstract

Effective sampling of biological material is critical to the ability to acquire DNA profiles of probative value. The main methods of collection are swabbing, tapelifting, or direct excision. This chapter describes the key aspects to consider when applying these methods, in addition to suggested procedures for swabbing and tapelifting. Important issues to be considered, such as exhibit triaging, pre-examination preparation, contamination risk reduction, sample localization, sample identification, and sample prioritization as well as aspects of record keeping, packaging, and storage, are also raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Oorschot RAH, Treadwell S, Beaurepaire J, Holding NL, Mitchell RJ (2005) Beware of the possibility of fingerprinting techniques transferring DNA. J Forensic Sci 50:1417–1422

    PubMed  Google Scholar 

  2. Gibb C, Gutowski SJ, van Oorschot RAH (2012) Assessment of the possibility of DNA accumulation and transfer in a superglue chamber. J Forensic Ident 62:409–424

    Google Scholar 

  3. van Hoofstat DE, Deforce DL, Hubert De Pauw IP, van den Eeckhout EG (1999) DNA typing of fingerprints using capillary electrophoresis: effect of dactyloscopic powders. Electrophoresis 20:2870–2876

    Article  PubMed  Google Scholar 

  4. Stein C, Kyeck SH, Henssge C (1996) DNA typing of fingerprint reagent treated biological stains. J Forensic Sci 41:1012–1017

    Article  CAS  PubMed  Google Scholar 

  5. Roux C, Gill K, Sutton J, Lennard C (1999) A further study to investigate the effect of fingerprint enhancement techniques on the DNA analysis of bloodstains. J Forensic Ident 49:357–376

    Google Scholar 

  6. Frégeau CJ, Germain O, Fourney RM (2000) Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent profiler plus(TM) fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints. J Forensic Sci 45:354–380

    Article  PubMed  Google Scholar 

  7. Raymond JJ, Roux C, Du Pasquier E, Sutton J, Lennard C (2004) The effect of common fingerprint detection techniques on the DNA typing of fingerprints deposited on different surfaces. J Forensic Ident 54:22–44

    Google Scholar 

  8. Poy AL, van Oorschot RAH (2006) Trace DNA presence, origin, and transfer within a forensic biology laboratory and its potential effect on casework. J Forensic Ident 56:558–576

    Google Scholar 

  9. Ballantyne KN, Poy AL, van Oorschot RAH (2013) Environmental DNA monitoring: beware of the transition to more sensitive typing methodologies. Aust J Forensic Sci 45:323–340

    Article  Google Scholar 

  10. Bright JA, Cockerton S, Harbison S, Russell A, Samson O, Stevenson K (2011) The effect of cleaning agents on the ability to obtain DNA profiles using the identifiler™ and PowerPlex® Y multiplex kits. J Forensic Sci 56:181–185

    Article  PubMed  Google Scholar 

  11. Harris KA, Thacker CR, Ballard D, Court DS (2006) The effect of cleaning agents on the DNA analysis of blood stains deposited on different substrates. Int Congr Ser 1288:589–591

    Article  Google Scholar 

  12. Vandewoestyne M, van Hoofstat D, De Groote S, van Thuyne N, Haerinck S, van Nieuwerburgh F et al (2011) Sources of DNA contamination and decontamination procedures in the forensic laboratory. J Forensic Res S2:001. doi:10.4172/2157-7145.S2-001

    Article  Google Scholar 

  13. Tamariz J, Voynarovska K, Prinz M, Caragine T (2006) The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci 51:790–794

    Article  CAS  PubMed  Google Scholar 

  14. Shaw K, Sesardic I, Bristol N, Ames C, Dagnall K, Ellis C et al (2008) Comparison of the effects of sterilisation techniques on subsequent DNA profiling. Int J Legal Med 122:29–33

    Article  PubMed  Google Scholar 

  15. Szkuta B, Harvey ML, Ballantyne KN, van Oorschot RAH (2013) The potential transfer of trace DNA via high risk vectors during exhibit examination. Forensic Sci Int Genet Suppl Ser 4:e55–e56

    Article  Google Scholar 

  16. Lennard C, Stoilovic M (2004) Application of forensic light sources at the crime scene. In: Horswell J (ed) The practice of crime scene investigation. CRC Press, Boca Raton, FL, pp 97–124

    Google Scholar 

  17. Vandenberg N, van Oorschot RAH (2006) The use of polilight((R)) in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests. J Forensic Sci 51:361–370

    Article  CAS  PubMed  Google Scholar 

  18. Ben Yosef N, Almog J, Frank A, Springer E, Cantu AA (1998) Short UV luminescence for forensic applications: design of a real-time observation system for detection of latent fingerprints and body fluids. J Forensic Sci 43:299–304

    CAS  PubMed  Google Scholar 

  19. Albanese J, Montes R (2011) Latent evidence detection using a combination of near infrared and high dynamic range photography: an example using bloodstains. J Forensic Sci 56:1601–1603

    Article  PubMed  Google Scholar 

  20. Dieltjes P, Mieremet R, Zuniga S, Kraaijenbrink T, Pijpe J, De Knijff P (2011) A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling. Int J Legal Med 125:597–602

    Article  PubMed  PubMed Central  Google Scholar 

  21. Verdon TJ, Mitchell RJ, van Oorschot RA (2014) Swabs as DNA collection devices for sampling different biological materials from different substrates. J Forensic Sci 59(4):1080–1089

    Article  CAS  PubMed  Google Scholar 

  22. Raymond JJ, van Oorschot RAH, Walsh SJ, Roux C (2008) Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey. Forensic Sci Int Genet 2:19–28

    Article  PubMed  Google Scholar 

  23. van Oorschot RAH, Weston RK, Jones MK (1998) In: Retrieval of DNA from touched objects. In: Proceedings of the 14th International Symposium of Forensic Sciences of the Australian and New Zealand Forensic Science Society, Adelaide

    Google Scholar 

  24. van Oorschot RAH, Szepietowska I, Scott DL, Weston RKM, Jones J (1999) In: Retrieval of genetic profiles from touched objects. In: Proceedings of the First International Conference on Forensic Human Identification in the Millennium, London. Forensic Science Service (UK)

    Google Scholar 

  25. Sweet D, Lorente M, Lorente JA, Valenzuela A, Villanueva E (1997) An improved method to recover saliva from human skin: the double swab technique. J Forensic Sci 42:320–322

    CAS  PubMed  Google Scholar 

  26. Pang BCM, Cheung BKK (2007) Double swab technique for collecting touched evidence. Leg Med 9:181–184

    Article  CAS  Google Scholar 

  27. Verdon TJ, Mitchell RJ, van Oorschot RAH (2014) Evaluation of tapelifting as a collection method for touch DNA. Forensic Sci Int Genet 8:179–186

    Article  CAS  PubMed  Google Scholar 

  28. van Oorschot RAH (2012) Assessing DNA profiling success rates: need for more and better collection of relevant data. Forensic Sci Pol Manag 3:37–41

    Article  Google Scholar 

  29. Garrett AD, Patlak DJ, Gunn LE, Brodeur AN, Grgicak CM (2014) Exploring the potential of a wet-vacuum collection system for DNA recovery. J Forensic Ident 64:429–448

    Google Scholar 

  30. Anoruo B, van Oorschot RAH, Mitchell RJ, Howells D (2007) Isolating cells from non-sperm cellular mixtures using the PALM® microlaser micro dissection system. Forensic Sci Int 173:93–96

    Article  CAS  PubMed  Google Scholar 

  31. Anslinger K, Bayer B, Mack B, Eisenmenger W (2007) Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling. Int J Legal Med 121:54–56

    Article  CAS  PubMed  Google Scholar 

  32. Vandewoestyne M, van Hoofstat D, van Nieuwerburgh F, Deforce D (2009) Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med 123:441–447

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haas C, Klesser B, Maake C, Bär W, Kratzer A (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88

    Article  CAS  PubMed  Google Scholar 

  34. Fleming RI, Harbison S (2010) The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci Int Genet 4:244–256

    Article  CAS  PubMed  Google Scholar 

  35. Lindenbergh A, De Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M et al (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6:565–577

    Article  CAS  PubMed  Google Scholar 

  36. Bauer M, Patzelt D (2003) A method for simultaneous RNA and DNA isolation from dried blood and semen stains. Forensic Sci Int 136:76–78

    Article  CAS  PubMed  Google Scholar 

  37. Bowden A, Fleming R, Harbison S (2011) A method for DNA and RNA co-extraction for use on forensic samples using the promega DNA IQ™ system. Forensic Sci Int Genet 5:64–68

    Article  CAS  PubMed  Google Scholar 

  38. Lee HC, Ladd C (2001) Preservation and collection of biological evidence. Croat Med J 42:225–228

    CAS  PubMed  Google Scholar 

  39. van Oorschot RAH, Jones MK (1997) DNA fingerprints from fingerprints [6]. Nature 387:767

    Article  PubMed  Google Scholar 

  40. Daly DJ, Murphy C, McDermott SD (2012) The transfer of touch DNA from hands to glass, fabric and wood. Forensic Sci Int Genet 6:41–46

    Article  CAS  PubMed  Google Scholar 

  41. van Oorschot RAH, Ballantyne KN, Mitchell RJ (2010) Forensic trace DNA: a review. Investig Genet 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  42. Prinz M, Schiffner L, Sebestyen JA, Bajda E, Tamariz J, Shaler RC, et al (2006) Maximization of STR DNA typing success for touched objects. Int Congr Ser 1228:651–653

    Google Scholar 

  43. Collopy C (2008) Mini-popule developed to maximize DNA recovery for robotic forensic analysis. Forensic Mag 01/02/2008

    Google Scholar 

Download references

Disclaimer

The views presented in this chapter are solely those of the authors and do not necessarily represent views or policies of their respective organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland A. H. van Oorschot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Oorschot, R.A.H., Verdon, T.J., Ballantyne, K.N. (2016). Collection of Samples for DNA Analysis. In: Goodwin, W. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 1420. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3597-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3597-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3595-6

  • Online ISBN: 978-1-4939-3597-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics