Skip to main content

Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Faithful chromosome segregation during cell division requires proper bipolar spindle assembly and critically depends on spindle pole integrity. In most animal cells, spindle poles form as the result of the concerted action of various factors operating in two independent pathways of microtubule assembly mediated by chromatin/RanGTP and by centrosomes. Mutation or deregulation of a number of spindle pole-organizing proteins has been linked to human diseases, including cancer and microcephaly. Our knowledge on how the spindle pole-organizing factors function at the molecular level and cooperate with one another is still quite limited. As the list of these factors expands, so does the need for the development of experimental approaches to study their function. Cell-free extracts from Xenopus laevis eggs have played an instrumental role in the dissection of the mechanisms of bipolar spindle assembly and have recently allowed the reconstitution of the key steps of the centrosome-driven microtubule nucleation pathway (Joukov et al., Mol Cell 55:578–591, 2014). Here we describe assays to study both centrosome-dependent and centrosome-independent spindle pole formation in Xenopus egg extracts. We also provide experimental procedures for the use of artificial centrosomes, such as microbeads coated with an anti-Aurora A antibody or a recombinant fragment of the Cep192 protein, to model and study centrosome maturation in egg extract. In addition, we detail the protocol for a microtubule regrowth assay that allows assessment of the centrosome-driven spindle microtubule assembly in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compton DA (1998) Focusing on spindle poles. J Cell Sci 111(Pt 11):1477–1481

    CAS  PubMed  Google Scholar 

  2. Heald R, Walczak CE (2009) Mitotic spindle assembly mechanisms. In: De Wulf P, Earnshaw WC (eds) The kinetochore: from molecular discoveries to cancer therapy. Springer Science + Business Media, LLC, New York, NY, pp 231–268

    Google Scholar 

  3. Fant X, Merdes A, Haren L (2004) Cell and molecular biology of spindle poles and NuMA. Int Rev Cytol 238:1–57

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson JM, Cimini D (2011) How mitotic errors contribute to karyotypic diversity in cancer. Adv Cancer Res 112:43–75

    Article  CAS  PubMed  Google Scholar 

  5. Manning AL, Compton DA (2008) Structural and regulatory roles of nonmotor spindle proteins. Curr Opin Cell Biol 20(1):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463

    Article  CAS  PubMed  Google Scholar 

  7. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678

    Article  CAS  PubMed  Google Scholar 

  8. Bornens M (2012) The centrosome in cells and organisms. Science 335(6067):422–426

    Article  CAS  PubMed  Google Scholar 

  9. Joukov V, De Nicolo A, Rodriguez A, Walter JC, Livingston DM (2010) Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation. Proc Natl Acad Sci U S A 107(49):21022–21027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joukov V, Walter JC, De Nicolo A (2014) The Cep192-organized Aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol Cell 55(4):578–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalab P, Heald R (2008) The RanGTP gradient - a GPS for the mitotic spindle. J Cell Sci 121(Pt 10):1577–1586

    Article  CAS  PubMed  Google Scholar 

  12. Meunier S, Vernos I (2012) Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 125(Pt 12):2805–2814

    Article  CAS  PubMed  Google Scholar 

  13. Tsai MY, Zheng Y (2005) Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced Spindle Assembly. Curr Biol 15(23):2156–2163

    Article  CAS  PubMed  Google Scholar 

  14. Hannak E, Heald R (2006) Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat Protoc 1(5):2305–2314

    Article  CAS  PubMed  Google Scholar 

  15. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  PubMed  Google Scholar 

  16. Lebofsky R, Takahashi T, Walter JC (2009) DNA replication in nucleus-free Xenopus egg extracts. Methods Mol Biol 521:229–252

    Article  CAS  PubMed  Google Scholar 

  17. Gruss OJ et al (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104(1):83–93

    Article  CAS  PubMed  Google Scholar 

  18. Heald R et al (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382(6590):420–425

    Article  CAS  PubMed  Google Scholar 

  19. Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284(5418): 1356–1358

    Article  CAS  PubMed  Google Scholar 

  20. Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284(5418):1359–1362

    Article  CAS  PubMed  Google Scholar 

  21. Carazo-Salas RE et al (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400(6740):178–181

    Article  CAS  PubMed  Google Scholar 

  22. Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF (2011) In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477(7364):354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly AE et al (2007) Chromosomal enrichment and activation of the Aurora B pathway are coupled to spatially regulate spindle assembly. Dev Cell 12(1):31–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152(4):768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Desai A, Murray A, Mitchison TJ, Walczak CE (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol 61:385–412

    Article  CAS  PubMed  Google Scholar 

  26. Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T (1994) A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J 13(23):5732–5744

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Joukov V et al (2006) The BRCA1/BARD1 heterodimer modulates Ran-dependent mitotic spindle assembly. Cell 127(3):539–552

    Article  CAS  PubMed  Google Scholar 

  28. Groen AC et al (2004) XRHAMM functions in Ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14(20):1801–1811

    Article  CAS  PubMed  Google Scholar 

  29. Debec A, Sullivan W, Bettencourt-Dias M (2010) Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 67(13):2173–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mason JM et al (2014) Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 26(2):163–176

    Article  CAS  PubMed  Google Scholar 

  31. Vassilev LT et al (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103(28):10660–10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iwabuchi M, Ohsumi K, Yamamoto TM, Sawada W, Kishimoto T (2000) Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J 19(17):4513–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joukov V (2011) Aurora kinases and spindle assembly: variations on a common theme? Cell Cycle 10(6):895–903

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Joukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joukov, V., Walter, J.C., De Nicolo, A. (2016). Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics