Skip to main content

Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues

  • Protocol
Sample Preparation Techniques for Soil, Plant, and Animal Samples

Abstract

Isolation of the two most abundant plant macromolecules, lignin and cellulose, from the plant tissues is reviewed. Isolation methods depend on the plant tissue that is used as the source of the polymers. Assessment of purity has an important place in the whole isolation process. Extent of needed purity depends on the further application of the obtained polymers. Different lignin extraction procedures are presented. Lignin isolation via preceding extraction of pulp is usually applied on wood as a starting material. The procedure preceded by cell wall extraction and combined with lignin complexation with thioglicolic acid is used for plant tissues containing various kinds of cells or low lignin content comparing with protein content. Lignin purification with ionic liquids, as well as those obtaining Brauns’ native lignin, kraft lignin, or lignosulfonate are also described. The review of cellulose isolation procedures is presented, such as the alkaline procedure, as well as the method using ultrasound treatment, or the method applying enzyme technology. Dilute acid pretreatment in cellulose isolation is also depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Magalhães Silva Moural JC, Bonine CAV, de Oliveira Fernandes Viana J, Carnier Dornelas M, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  Google Scholar 

  3. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  4. Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, VA, pp 17–21

    Google Scholar 

  5. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  6. Demura T, Ye Y-H (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:1–6

    Article  Google Scholar 

  7. Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston M, Myles DA, Ragauskas A, Evans BR (2010) Breakdown of cell wall nanostructure in dilute acid pretreated Biomass. Biomacromolecules 11:2329–2335

    Article  CAS  PubMed  Google Scholar 

  8. Albersheim P (1978) Concerning the structure and biosynthesis of the primary cell walls of plants. In: Manners DJ (ed) Biochemistry of carbohydrates II. Univ. Park Press, Baltimore, MD, pp 127–150, Int Rev Biochem 16

    Google Scholar 

  9. Baba K (2006) Models of plant cell walls. In: Hayashi T (ed) The science and lore of the plant cell wall: Biosynthesis, structure and function. Brown Walker Press, Boca Raton, pp 3–10

    Google Scholar 

  10. Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Sci Bull B 73:133–152

    CAS  Google Scholar 

  11. Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15:8642–8688

    Google Scholar 

  12. Thompson LU, Rickard SE, Orcheson LJ, Seidl MM (1996) Flaxseed and its lignan and oil components reduce mammary tumor growth at a late stage of carcinogenesis. Carcinogenesis 17:1373–1376

    Article  CAS  PubMed  Google Scholar 

  13. Baurhoo B, Ruiz-Feria CA, Zhaoa X (2008) Purified lignin: nutritional and health impacts on farm animals – a review. Anim Feed Sci Tech 144:175–184

    Article  CAS  Google Scholar 

  14. Henry BL, Aziz MA, Zhou Q, Desai UR (2010) Sulfated, low-molecular-weight lignins are potent inhibitors of plasmin, in addition to thrombin and factor Xa: novel opportunity for controlling complex pathologies. Thromb Haemost 103:507–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  16. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27:202–207

    Article  CAS  Google Scholar 

  17. Balogh DT, Curvelo AAS (1998) Successive and batch extraction of Eucalyptus grandis in dioxane-water-HCl solution. Pap Tim 80:374–378

    CAS  Google Scholar 

  18. Lapierre C, Monties B (1986) Thioacidolysis of poplar lignins: Identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions. Holzforschung 40:113–118

    Article  CAS  Google Scholar 

  19. Kim J, Mazza G (2009) Extraction and separation of carbohydrates and phenolics compounds in flax shives with pH controlled pressurized low polarity water. J Agric Food Chem 57:1805–1813

    Article  CAS  PubMed  Google Scholar 

  20. Ross K, Mazza G (2010) Characteristics of lignin from flax shives as affected by extraction conditions. Int J Mol Sci 11:4035–4050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yamasaki T, Hosoya S, Chen C-L, Gratzl JS, Chang H-M (1981) Characterization of residual lignin in pulp. In: Proceedings of the international symposium on wood and pulping chemistry. Stockholm, Sweden, pp 34–42

    Google Scholar 

  22. Hortling B, Ranua M, Sundquist J (1992) Investigation of residual lignin in chemical pulps part 2. Purification and characterization of residual lignin after enzymatic hydrolysis of pulps. Nord Pulp Paper Res 3:144–151

    Article  Google Scholar 

  23. Lundquist K (1973) Acid degradation of lignin part VIII. Low molecular weight phenols from acidolysis of birch lignin. Acta Chem Scand 27:2597–2606

    Article  CAS  Google Scholar 

  24. Gellerstedt G, Pranda J, Lindfors E (1994) Structure and molecular properties of residual birch kraft lignins. J Wood Sci Technol 14:467–482

    CAS  Google Scholar 

  25. Froass PM, Ragauskas AJ, Jiang JE (1996) Chemical structure of residual lignin from kraft pulp. J Wood Chem Technol 16:347–365

    Article  CAS  Google Scholar 

  26. Prado R, Erdocia X, Labidi J (2012) Lignin extraction and purification with ionic liquids. J Chem Terchnol Biotechnol. (wileyonlinelibrary.com)

    Google Scholar 

  27. Meng L-Y, Kang S-M, Zhang X-M, Wu Y-Y, Sun R-C (2012) Isolation and physico-chemical characterization of lignin from hybrid poplar in DMSO/LiCl system induced by microwave-assisted irradiation. Cell Chem Technol 46:409–418

    CAS  Google Scholar 

  28. Brauns FE (1952) The chemistry of lignin. Academic, New York, p 51

    Google Scholar 

  29. Lundquist K, Kirk TK (1980) Fractionnation-purification of an industrial Kraft lignin. Tappi 63:80–82

    CAS  Google Scholar 

  30. Obst JR, Kirk TK (1988) Isolation of lignin. In: Wood WA, Kellogg ST (eds) Methods in enzymology – biomass part b, lignin, pectin and hitin. Academic, San Diego, pp 3–12

    Chapter  Google Scholar 

  31. Harris PJ (1983) Cell walls. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic, London, pp 25–53

    Google Scholar 

  32. Strack D, Heilemann J, Wray V, Dirks H (1988) Cell wall: conjugated phenolics from coniferae leaves. Phytochemistry 28:2071–2078

    Article  Google Scholar 

  33. Chen M, Sommer AJ, McClure JW (2000) Fourier transform-IR determination of protein contamination in thioglycolic acid lignin from radish seedlings and improved methods for extractive-free cell wall preparation. Phytochem Anal 11:153–159

    Article  CAS  Google Scholar 

  34. Simonović J, Stevanić J, Djikanović D, Salmén L, Radotić K (2011) Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 18:1433–1440

    Article  Google Scholar 

  35. Djikanović D, Kalauzi A, Jeremić M, Xu J, Mićić M, Whyte JD, Leblanc RM, Radotić K (2012) Interaction of the CdSe quantum dots with plant cell walls. Colloid Surf B Biointerface 91:41–47

    Article  Google Scholar 

  36. Radotić K, Roduit C, Simonović J, Hornitschek P, Fankhauser C, Mutavdžić D, Steinbach G, Dietler G, Kasas S (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103:386–394

    Article  PubMed Central  PubMed  Google Scholar 

  37. Haymes KM, Ibrahim IA, Mischke S, Scott DL, Saunders JA (2004) Rapid isolation of DNA from chocolate and date palm tree crops. J Agric Food Chem 52:5456–5462

    Article  CAS  PubMed  Google Scholar 

  38. Dean JFD (1997) Lignin analysis. In: Wv D (ed) Methods in plant biochemistry and molecular biology. CRC Press, Boca Raton, pp 199–215

    Google Scholar 

  39. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  41. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohyd Polym 73:371–377

    Article  CAS  Google Scholar 

  42. Reddy N, Yang Y (2006) Properties of high-quality long natural cellulose fibers from rice straw. J Agric Food Chem 54:8077–8081

    Article  CAS  PubMed  Google Scholar 

  43. Nuruddin M, Chowdhury A, Haque SA, Rahman M, Farhad SF, Sarwar Jahan M, Quaiyyum A (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cell Chem Technol 45:347–354

    CAS  Google Scholar 

  44. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84:331–339

    Article  CAS  Google Scholar 

  45. Janardhnan S, Sain MM (2006) Cellulose microfibril isolation. BioResources 1:176–188

    Google Scholar 

  46. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Article  CAS  Google Scholar 

  47. Schell D, Farmer J, Newman M, McMillan J (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105:69–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenija Radotić D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Radotić, K., Mićić, M. (2016). Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_26

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics