Skip to main content

Cardiovascular Nanomedicine: Materials and Technologies

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The advent of nanotechnology in the medical arena has led to unique ways of biomaterials engineering and device modifications, disease detection and treatment. To this end, the two principal nanomedicine focus areas are cancer and cardiovascular pathologies. The current chapter is aimed at presenting a comprehensive review of nanotechnology-based strategies in cardiovascular diseases, with emphasis on targeted delivery of therapeutic payloads selectively at the disease site. The rationale for such strategies stem from the need of resolving the issues of (1) rapid drug clearance, (2) plasma-induced drug deactivation, (3) suboptimal drug availability at the disease site, and (4) indiscriminate biodistribution of the drugs leading to harmful systemic side effects, all of which arise when drugs are administered directly in systemic circulation. The most significant application of nanotechnology in resolving these issues is by packaging the drugs within plasma-stable nanovehicles that can preferentially accumulate at the vascular disease site via passive uptake or bind actively to the site via antigen-specific ligands decorated on the vehicle surface. During past three decades, significant advancements in understanding vascular disease-associated genomics and proteomics, cellular and molecular mechanisms as well as nanoscale and microscale strategies of biomaterials engineering have led to several exciting nanomedicine approaches in vascular disease treatment. The chapter will describe these approaches in terms of materials engineering, payload release mechanisms, biochemical and biophysical design parameters of the delivery platforms, and integration of multiple design parameters and functionalities on single vehicle platform, along with discussing the promises and limitations of such vascular nanomedicine approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al. (2014) On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommitte. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129: e28

    Google Scholar 

  2. WHO (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva

    Google Scholar 

  3. Phillips DR, Conley PB, Sinha U, Andre P (2005) Therapeutic approaches in arterial thrombosis. J Thromb Haemost 3:1577–1589

    CAS  PubMed  Google Scholar 

  4. Gurbel PA, Serebruany VL (2000) Oral Platelet IIb/IIIa inhibitors: from attractive theory to clinical failures. J Thromb Thrombolysis 10:217–220

    CAS  PubMed  Google Scholar 

  5. Marzilli M (1995) From the experimental myocardial infarction to the clinical acute myocardial infarction: limitations of thrombolytic therapy. Int J Cardiol 49:S71–S75

    PubMed  Google Scholar 

  6. Rebeiz AG, Granger CB, Simoons ML (2005) Incidence and management of complications of fibrinolytic, antiplatelet, and anticoagulant therapy. Fundam Clin Cardiol 52:375–395

    CAS  Google Scholar 

  7. Brieger D, Topol E (1997) Local drug delivery systems and prevention of restenosis. Cardiovasc Res 35:405–413

    CAS  PubMed  Google Scholar 

  8. Eccleston DS, Lincoff AM (1997) Catheter-based drug delivery for restenosis. Adv Drug Deliv Rev 24:31–43

    CAS  Google Scholar 

  9. Fattori R, Piva T (2003) Drug-eluting stents in vascular intervention. Lancet 361:247–249

    PubMed  Google Scholar 

  10. Torchilin VP (1995) Targeting of drugs and drug carriers within the cardiovascular system. Adv Drug Deliv Rev 17:75–101

    CAS  Google Scholar 

  11. Zolot RS, Basu S, Million RP (2013) Antibody–drug conjugates. Nat Rev Drug Discov 12:259–260

    CAS  PubMed  Google Scholar 

  12. Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE (2014) Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 114:1083–1093

    CAS  PubMed  Google Scholar 

  13. Dong N, Da Cunha V, Citkowicz A, Wu F, Vincelette J, Larsen B, Wang YX, Ruan C, Dole WP, Morser J, Wu Q, Pan J (2004) P-selectin-targeting of the fibrin selective thrombolytic Desmodus rotundus salivary plasminogen activator alpha1. Thromb Haemost 92:956–965

    CAS  PubMed  Google Scholar 

  14. Diamond SL (1999) Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng 1:427–461

    CAS  PubMed  Google Scholar 

  15. Thomas AC, Campbell JH (2004) Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis. Atherosclerosis 176:73–81

    CAS  PubMed  Google Scholar 

  16. Sen Gupta A (2011) Nanomedicine approaches in vascular disease: a review. Nanomedicine 7:763–779

    CAS  Google Scholar 

  17. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Poly Sci Symp 51:135–153

    CAS  Google Scholar 

  18. Elvira C, Gallardo A, Roman JS, Cifuentes A (2005) Covalent polymer-drug conjugates. Molecules 10:114–125

    CAS  PubMed  Google Scholar 

  19. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  PubMed  Google Scholar 

  20. Berger HJ Jr, Pizzo SV (1988) Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species. Blood 71:1641–1647

    CAS  PubMed  Google Scholar 

  21. Rajagopalan S, Gonias SL, Pizzo SV (1985) A nonantigenic covalent streptokinasepolyethylene glycol complex with plasminogen activator function. J Clin Invest 75:413–419

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Sakuragawa N, Shimizu K, Kondo K, Kondo S, Niwa M (1986) Studies on the effect of PEG-modified urokinase on coagulation-fibrinolysis using beagles. Thromb Res 41:627–635

    CAS  PubMed  Google Scholar 

  23. Moreadith RW, Collen D (2003) Clinical development of PEGylated recombinant staphylokinase (PEGSak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv Drug Deliv Rev 55:1337–1345

    CAS  PubMed  Google Scholar 

  24. Collen D, Sinnaeve P, Demarsin E, Moreau H, De Maeyer M, Jespers L, Laroche Y, Van de Werf F (2000) Polyethylene glycol-derivatized cysteine substitution variants of recombinant staphylokinase for single-bolus treatment of acute myocardial infarction. Circulation 102:1766–1772

    CAS  PubMed  Google Scholar 

  25. Lasic DD, Papahadjopaulos D (eds) (1998) Medical applications of liposomes. Elsevier, Amsterdam

    Google Scholar 

  26. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  PubMed  Google Scholar 

  27. Cˇeh B, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD (1997) Stealth® liposomes: from theory to product. Adv Drug Deliv Rev 24:165–177

    Google Scholar 

  28. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    CAS  PubMed  Google Scholar 

  29. Nguyen PD, O’Rear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R (1990) Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ Res 66:875–878

    CAS  PubMed  Google Scholar 

  30. Heeremans JLM, Prevost R, Bekkers MEA, Los P, Emeis JJ, Kluft C, Crommelin DJ (1995) Thrombolytic treatment with tissue-type plasminogen activators (t-PA) containing liposomes in rabbit: a comparison with free t-PA. Thromb Haemost 73:488–494

    CAS  PubMed  Google Scholar 

  31. Leach JK, O’Rear EA, Patterson E, Miao Y, Johnson AE (2003) Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb Haemost 90:64–70

    CAS  PubMed  Google Scholar 

  32. Perkins WR, Vaughan DE, Plavin SR, Daley WL, Rauch J, Lee L, Janoff AS (1997) Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 77:1174–1178

    CAS  PubMed  Google Scholar 

  33. Kim I-S, Choi H-G, Choi H-S, Kim B-K, Kim C-K (1998) Prolonged systemic delivery of streptokinase using liposome. Arch Pharm Res 21:248–252

    CAS  PubMed  Google Scholar 

  34. Dzau VJ, Mann MJ, Morishita R, Kaneda Y (1996) Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A 93:11421–11425

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Nabel EG (1995) Gene therapy for cardiovascular disease. Circulation 91:541–548

    CAS  PubMed  Google Scholar 

  36. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ (1993) Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest 91:2580–2585

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Leclerc G, Gal D, Takeshita S, Nikol S, Weir L, Isner JM (1992) Percutaneous arterial gene transfer in a rabbit model: efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest 90:936–944

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Lim CS, Chapman GD, Gammon RS, Muhlestein JB, Bauman RP, Stack RS, Swain JL (1991) Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 83:2007–2011

    CAS  PubMed  Google Scholar 

  39. Chapman GD, Lim CS, Gammon RS, Culp SC, Desper S, Bauman RP, Swain JL, Stack RS (1992) Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ Res 71:27–33

    CAS  PubMed  Google Scholar 

  40. Zheng J, Liu J, Dunne M, Jaffray DA, Allen C (2007) In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharm Res 24:1193–1201

    CAS  PubMed  Google Scholar 

  41. Maiseyeu A, Mihai G, Kampfrath T, Simonetti OP, Sen CK, Roy S, Rajagopalan S, Parthasarathy S (2009) Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 50:2157–2163

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Rensen PC, Gras JC, Lindfors EK, van Dijk KW, Jukema JW, van Berkel TJ, Biessen EA (2006) Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A. Curr Drug Discov Technol 3:135–144

    CAS  PubMed  Google Scholar 

  43. Mulder WJM, Douma K, Koning GA, van Zandvoort MA, Lutgens E, Daemen MJ, Nikolay K, Strijkers GJ (2006) Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55:1170–1174

    PubMed  Google Scholar 

  44. Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    CAS  PubMed  Google Scholar 

  45. Lee JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161:473–483

    CAS  PubMed  Google Scholar 

  46. Massignani M, Lomas H, Battaglia G (2010) Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci 229:115–154

    CAS  Google Scholar 

  47. Akagi D, Oba M, Koyama H, Nishiyama N, Fukushima S, Miyata T, Nagawa H, Kataoka K (2007) Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 14:1029–1038

    CAS  PubMed  Google Scholar 

  48. Ding B-S, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR (2006) Advanced drug delivery systems that target the vascular endothelium. Mol Interv 6:98–112

    CAS  PubMed  Google Scholar 

  49. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    CAS  PubMed  Google Scholar 

  50. Lincoff MA, Topol EJ, Ellis SG (1994) Local drug delivery for the prevention of restenosis: facts, fancy and future. Circulation 90:2070–2084

    CAS  PubMed  Google Scholar 

  51. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    CAS  PubMed  Google Scholar 

  52. Yang Z, Birkenhauer P, Julmy F, Chickering D, Ranieri JP, Merkle HP, Lüscher TF, Gander B (1999) Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. J Control Release 60:269–277

    CAS  PubMed  Google Scholar 

  53. Chung T-W, Wang SS, Tsai W-J (2008) Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 29:228–237

    CAS  PubMed  Google Scholar 

  54. Klugherz BD, Meneveau N, Chen W, Wade-Whittaker F, Papandreou G, Levy R, Wilensky RL (1999) Sustained intramural retention and regional redistribution following local vascular delivery of Polylactic-co-glycolic acid and liposomal nanoparticulate formulations containing probucol. J Cardiovasc Pharmacol Ther 4:167–174

    CAS  PubMed  Google Scholar 

  55. Kolodgie FD, John M, Khurana C, Farb A, Wilson PS, Acampado E, Desai N, Soon-Shiong P, Virmani R (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1195–1198

    CAS  PubMed  Google Scholar 

  56. Westedt U, Kalinowski M, Wittmer M, Merdan T, Unger F, Fuchs J, Schaller S, Bakowsky U, Kissel T (2007) Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 119:41–51

    CAS  PubMed  Google Scholar 

  57. Deshpande D, Devalapally H, Amiji M (2008) Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon coadministration with ceramide using biodegradable polymeric nanoparticles. Pharm Res 25:1936–1947

    CAS  PubMed  Google Scholar 

  58. Zou W, Cao G, Xi Y, Zhang N (2009) New approach for local delivery of rapamycin by bioadhesive PLGA-carbopol nanoparticles. Drug Deliv 16:15–23

    CAS  PubMed  Google Scholar 

  59. Zweers ML, Engbers GH, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly (ethylene oxide)-poly(DL-lactic-co-glycolic acid) nanoparticles. J Control Release 114:317–324

    CAS  PubMed  Google Scholar 

  60. Luderer F, Lobler M, Rohm HW, Gocke C, Kunna K, Kock K, Kroemer HK, Westschies W, Shmitz KP, Sternberg K (2011) Biodegradable sirolimus loaded poly(lactide) nanoparticles as drug delivery systems for the prevention of in-stent restenosis in coronary stent application. J Biomater Appl 25:851–875

    CAS  PubMed  Google Scholar 

  61. Nakano K, Egashira K, Masuda S, Funakoshi K, Zhao G, Kimura S, Matoba T, Sueishi K, Endo Y, Kawashima Y, Hara K, Tsujimoto H, Tominagu R, Sunagawa K (2009) Formulation of nanoparticle eluting stents by a cationic electrodesposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle eluting stents in porcine coronary arteries. JACC Cardiovasc Interv 2:277–283

    PubMed  Google Scholar 

  62. Margolis J, McDonald J, Heuser R, Klkinke P, Waksman R, Virmani R, Desai N, Hilton D (2007) Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis-I (SNAPIST-I): a first in human safety and dose finding study. Clin Cardiol 30:165–170

    PubMed  Google Scholar 

  63. Unger E, Matsunaga TO, Schumann PA, Zutshi R (2003) Microbubbles in molecular imaging and therapy. Medicamundi 47:58–65

    Google Scholar 

  64. Cavalieri F, Finelli I, Tortora M, Mozetic P, Chiessi E, Polizio F, Brismar TB, Paradossi G (2008) Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 20:3254–3258

    CAS  Google Scholar 

  65. Tsivgoulis G, Culp WC, Alexandrov AV (2008) Ultrasound enhanced thrombolysis in acute arterial ischemia. Ultrasonics 48:303–311

    CAS  PubMed  Google Scholar 

  66. Marta R, Alexandrov AV (2010) Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs 10:5–10

    Google Scholar 

  67. Mayer CR, Bekeredjian R (2008) Ultrasonic gene and drug delivery to cardiovascular system. Adv Drug Deliv Rev 60:1177–1192

    CAS  PubMed  Google Scholar 

  68. Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 124:306–310

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Tiukinhoy-Laing SD, Buchanan K, Parikh D, Huang S, MacDonald RC, McPherson DD, Klegerman ME (2007) Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 15:109–114

    CAS  PubMed  Google Scholar 

  70. Tomalia DA (1996) Starburst dendrimers—nanoscopic supermolecules according to dendritic rules and principles. Macromol Symp 101:243–255

    CAS  Google Scholar 

  71. Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  72. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications - reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    CAS  PubMed  Google Scholar 

  73. Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    CAS  PubMed  Google Scholar 

  75. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Lasers Med Sci 23:217–228

    PubMed  Google Scholar 

  76. Rosen JE, Chan L, Shieh DB, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8:275–290

    CAS  PubMed  Google Scholar 

  77. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Turkevitch J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  80. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) Synthesis of thiol derivatized gold nanoparticles in a two phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802

    Google Scholar 

  81. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    CAS  PubMed  Google Scholar 

  82. Vekilov PG (2011) Gold nanoparticles: grown in a crystal. Nat Nanotechnol 6:82–83

    CAS  PubMed  Google Scholar 

  83. Au L, Lu X, Xia Y (2008) A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2− or AuCl4−. Adv Mater 20:2517–2522

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Choi Y, Hong S, Liu L, Kim SK, Park S (2012) Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance. Langmuir 28:6670–6676

    CAS  PubMed  Google Scholar 

  85. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR (2013) Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application. EPMA J 4:18. doi:10.1186/1878-5085-4-18

    PubMed Central  PubMed  Google Scholar 

  86. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9:2212–2217

    CAS  PubMed  Google Scholar 

  87. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–782

    PubMed Central  PubMed  Google Scholar 

  88. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim SY, Choi K, Kwon IC, Kim K, Ahn CH (2008) A near-infrared fluorescence- quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed 47:2804–2807

    CAS  Google Scholar 

  89. Lukianova-Hleb EY, Mrochek AG, Lapotko DO (2009) Method for disruption and re-canalization of atherosclerotic plaques in coronary vessels with photothermal bubbles generated around gold nanoparticles. Lasers Surg Med 41:240–247

    PubMed  Google Scholar 

  90. Karaagac O, Kockar H, Beyaz S, Tanrisever T (2010) A simple way to synthesize superparamagnetic Iron Oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans Magn 46:3978–3983

    CAS  Google Scholar 

  91. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    CAS  PubMed  Google Scholar 

  92. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Bjørnerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17:465–477

    PubMed  Google Scholar 

  95. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, Klingel K, Kandolf R, Helluy X, Hiller KH, Jakob PM, Sechtem U (2013) Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34:462–475

    CAS  PubMed  Google Scholar 

  96. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    PubMed  Google Scholar 

  97. Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635

    PubMed  Google Scholar 

  98. Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SP, Gillard JH (2009) Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 29:1001–1008

    CAS  PubMed  Google Scholar 

  99. Schmitz SA, Taupitz M, Wagner S, Wol KJ, Beyersdorff D, Hamm B (2001) Magnetic resonance imaging of atherosclerotic plaques using superparamagenetic iron oxide particles. J Magn Reson Imaging 14:355–361

    CAS  PubMed  Google Scholar 

  100. Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M (2010) High- resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 122:1707–1715

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Sigovan M, Boussel L, Sulaiman A, Sappet-Marinier D, Alsaid H, Desbled-Mansard C, Ibarrola D, Gamondès D, Corot C, Lancelot E, Raynaud JS, Vives V, Laclédère C, Violas X, Douek PC, Canet-Soulas E (2009) Rapid clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409

    PubMed  Google Scholar 

  102. Kawahara I, Nakamoto M, Kitagawa N, Tsutsumi K, Nagata I, Morikawa M, Hayashi T (2008) Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol Med Chir 48:157–162

    Google Scholar 

  103. Erdem SS, Sazonova IY, Hara T, Jaffer FA, McCarthy JR (2012) Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 508:191–209

    CAS  PubMed  Google Scholar 

  104. Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2006) Heparinized magnertic nanoparticles: in vitro assessment for biomedical applications. Adv Funct Mater 16:1723–1730

    CAS  Google Scholar 

  105. Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ (2010) Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci U S A 107:8346–8651

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Sharma R, Kwon S (2007) New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci 2:115–126

    CAS  Google Scholar 

  107. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging. Probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Sinusas AJ, Bengel F, Nahrendorf M, Epstein FH, Wu JC, Villanueva FS, Fayad ZA, Gropler RJ (2008) Multimodality cardiovascular molecular imaging, Part I. Circ Cardiovasc Imaging 1:244–256

    PubMed  Google Scholar 

  109. Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, Lindner JR, Wu JC, Kraitchman DL, Fayad ZA, Sinusas AJ (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70

    PubMed Central  PubMed  Google Scholar 

  110. Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385

    CAS  PubMed  Google Scholar 

  111. Douma K, Prinzen L, Slaaf DW, Reutelingsperger CPM, Biessen EA, Hackeng TM, Post MJ, van Zandvoort MA (2009) Nanoparticles for optical molecular imaging of atherosclerosis. Small 5:544–557

    CAS  PubMed  Google Scholar 

  112. Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Tissue and organ-selective biodistribution of NIR-fluorescent quantum dots. Nano Lett 9:2354–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Tang Y, Han S, Liu H, Chen X, Huang L, Li X, Zhang J (2013) The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 34:8741–8755

    CAS  PubMed  Google Scholar 

  114. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC (2010) In vivo quantum-dot toxicity assessment. Small 6:138–144

    CAS  PubMed  Google Scholar 

  115. Skajaa T, Cormode DP, Falk E, Mulder WJM, Fisher EA, Fayad ZA (2010) High-density lipoprotein based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 30:169–176

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317

    CAS  PubMed  Google Scholar 

  117. Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224

    CAS  PubMed  Google Scholar 

  118. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    CAS  PubMed  Google Scholar 

  119. Hirsjärvi S, Passirani C, Benoit JP (2011) Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 8:188–196

    PubMed  Google Scholar 

  120. Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 5:1415–1433

    CAS  Google Scholar 

  121. Blackwell JE, Dagia NM, Dickerson JB, Berg EL, Goetz DJ (2001) Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions. Ann Biomed Eng 29:523–533

    CAS  PubMed  Google Scholar 

  122. Jancsó G, Domoki F, Sántha P, Varga J, Fischer J, Orosz K, Penke B, Becskei A, Dux M, Tóth L (1998) Beta-amyloid (1-42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neurosci Lett 253:139–141

    PubMed  Google Scholar 

  123. Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y (2002) Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor-ligand interactions. Blood 100:136–142

    CAS  PubMed  Google Scholar 

  124. Wada T, Okamura Y, Takeoka S, Sudo R, Ikeda Y, Tanishita K (2009) Deformability and adhesive force of artificial platelets measured by atomic force microscopy. J Biorheol 23:35–40

    Google Scholar 

  125. Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y (2001) Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Artif Cells Blood Substit Immobil Biotechnol 29:453–464

    CAS  PubMed  Google Scholar 

  126. Wilchek M, Bayer EA, Livnah O (2006) Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol Lett 103:27–32

    CAS  PubMed  Google Scholar 

  127. Lesch HP, Kaikkonen MU, Pikkarainen JT, Ylä-Herttuala S (2010) Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv 7:551–564

    CAS  PubMed  Google Scholar 

  128. Ganguly K, Krasik T, Medinilla S, Bdeir K, Cines DB, Muzykantov VR, Murciano JC (2005) Blood clearance and activity of erythrocyte-coupled fibrinolytics. J Pharmacol Exp Ther 312:1106–1113

    CAS  PubMed  Google Scholar 

  129. Gersh KC, Zaitsev S, Cines DB, Muzykantov V, Weisel JW (2011) Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 117:4964–4967

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR (2003) Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 21:891–896

    CAS  PubMed  Google Scholar 

  131. Muzykantov V (2013) Targeted drug delivery to endothelial adhesion molecules. ISRN Vasc Med 2013, 916254, http://dx.doi.org/10.1155/2013/916254

    Google Scholar 

  132. Sen Gupta A, von Recum HA (2014) Bioconjugation strategies: lipids, liposomes, polymersomes, and microbubbles. Chapter 6. In: Narain R (ed) Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Wiley, New York, NY

    Google Scholar 

  133. Demos MS, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson DD (1999) In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33:867–875

    CAS  PubMed  Google Scholar 

  134. Klegerman ME, Zou Y, McPherson DD (2008) Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res 18:95–112

    CAS  PubMed  Google Scholar 

  135. Huang S-L (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1167–1176

    CAS  PubMed  Google Scholar 

  136. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, Mehta JL, Beller GA, Glover DK, Meyer CH (2010) Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1by SPECT/CT and Magnetic Resonance. Circ Cardiovasc Imaging 3:464–472

    PubMed Central  CAS  PubMed  Google Scholar 

  137. De Bittencourt PIH Jr, Lagranha DJ, Maslinkiewicz A, Senna SM, Tavares AMV, Baldissera LP, Janner DR, Peralta JS, Bock PM, Gutierrez LL, Scola G, Heck TG, Krause MS, Cruz LA, Abdalla DS, Lagranha CJ, Lima T, Curi R (2007) LipoCardium: endotheliumdirected cyclopentanone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis 193:245–258

    Google Scholar 

  138. Haji-Valizadeh H, Modery-Pawlowski CL, Sen Gupta A (2014) An FVIII-derived peptide enables VWF-binding of a synthetic platelet surrogate without interfering with natural platelet adhesion to VWF. Nanoscale 6:4765–4773

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Modery-Pawlowski CL, Tian LL, Ravikumar M, Wong TL, Sen Gupta A (2013) In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct. Biomaterials 34:3031–3041

    CAS  PubMed  Google Scholar 

  140. Ravikumar M, Modery CL, Wong TL, Dzuricky M, Sen Gupta A (2012) Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes. Bioconjug Chem 23:1266–1275

    CAS  PubMed  Google Scholar 

  141. Ravikumar M, Modery CL, Wong TL, Sen Gupta A (2012) Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules 13:1495–1502

    CAS  PubMed  Google Scholar 

  142. Modery CL, Ravikumar M, Wong T, Dzuricky M, Durongkaveroj N, Sen Gupta A (2011) Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 32:9504–9514

    CAS  PubMed  Google Scholar 

  143. Srinivasan R, Marchant RE, Sen Gupta A (2010) In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A 93:1004–1015

    PubMed Central  PubMed  Google Scholar 

  144. Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, Sen Gupta A (2008) Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 29:1676–1685

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Sen Gupta A, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE (2005) RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 93:106–114

    CAS  Google Scholar 

  146. Mulder WJM, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JGS, Vucic E, Amirbekian V, Tang C, Chin PT, Nicolay K, Fayad ZA (2007) Molecular imaging of macrophages in atherosclerotic plaques using biomodal PEG-micelles. Magn Reson Med 58:1164–1170

    PubMed  Google Scholar 

  147. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JGS, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA, Fayad ZA (2006) MRI to detect atherosclerosis with Gadoliniumcontaining immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56:601–610

    PubMed  Google Scholar 

  148. Briley-Saebo KC, Shaw PX, Mulder WJM, Choi SH, Vucic E, Aguinaldo JGS, Witztum JL, Fuster V, Tsimikas S, Fayad ZA (2008) Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117:3206–3215

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Amirbekian V, Lipinski MJ, Frias JC, Amirbekian S, Briley-Saebo KC, Mani V, Samber D, Abbate A, Aguinaldo JGS, Masey D, Fuster V, Vetrovec G, Fayad ZA (2009) MR imaging of human atherosclerosis using immunomicelles molecularly targeted to macrophages. J Cardiovasc Magn Reson 11(Suppl 1):83

    Google Scholar 

  150. Chan JM, Zhang L, Tong R, Ghosh D, Gao W, Liao G, Yuet KP, Gray D, Rhee JW, Cheng J, Golomb G, Libby P, Langer R, Farokhzad OC (2010) Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A 107:2213–2218

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Chan JM, Rhee JW, Drum CL, Bronson RT, Golomb G, Langer R, Farokhzad OC (2011) In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci U S A 108:19347–19352

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, Ruoslahti E (2009) Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A 106:9815–9819

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Hamzah J, Kotamraju VR, Seo JW, Agemy L, Fogal V, Mahakian LM, Peters D, Roth L, Gagnon MK, Ferrara KW, Ruoslahti E (2011) Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 108:7154–7159

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR (2006) Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intracellular adhesion molecule. J Pharmacol Exp Ther 317:1161–1169

    CAS  PubMed  Google Scholar 

  155. Deosarkar SP, Malgor R, Fu J, Kohn LD, Hanes J, Goetz DJ (2008) Polymeric particles conjugated with a ligandto VCAM-1 exhibit selective avid and focal adhesion to sites of atherosclerosis. Biotechnol Bioeng 101:400–407

    CAS  PubMed  Google Scholar 

  156. Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB (2009) Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med 1:11–22

    Google Scholar 

  157. Coller BS, Springer KT, Beer JH, Mohandas N, Scudder LE, Norton KJ, West SM (1992) Thromboerythrocytes. In vitro studies of a potential autologous, semiartificial alternative to platelet transfusions. J Clin Invest 89:546–555

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Levi M, Friederich PW, Middleton S, de Groot PG, Wu YP, Harris R, Biemond BJ, Heijnen HF, Levin J, ten Cate JW (1999) Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits. Nat Med 5:107–111

    CAS  PubMed  Google Scholar 

  159. Okamura Y, Takeoka S, Teramura Y, Maruyama H, Tsuchida E, Handa M, Ikeda Y (2005) Hemostatic effects of fibrinogen gamma-chain dodecapeptide-conjugated polymerized albumin particles in vitro and in vivo. Transfusion 45:1221–1228

    CAS  PubMed  Google Scholar 

  160. Okamura Y, Fujie T, Nogawa M, Maruyama H, Handa M, Ikeda Y, Takeoka S (2008) Haemostatic effects of polymerized albumin particles carrying fibrinogen gamma-chain dodecapeptide as platelet substitutes in severely thrombocytopenic rabbits. Transfus Med 18:158–166

    CAS  PubMed  Google Scholar 

  161. Takeoka S, Okamura Y, Teramura Y, Watanabe N, Suzuki H, Tsuchida E, Handa M, Ikeda Y (2003) Function of fibrinogen gamma-chain dodecapeptide-conjugated latex beads under flow. Biochem Biophys Res Commun 312:773–779

    CAS  PubMed  Google Scholar 

  162. Okamura Y, Handa M, Suzuki H, Ikeda Y, Takeoka S (2006) New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions. J Artif Organs 9:251–258

    CAS  PubMed  Google Scholar 

  163. Chen W, Jarzyna PA, van Tilborg GA, Nguyen VA, Cormode DP, Klink A, Griffioen AW, Randolph GJ, Fisher EA, Mulder WJ, Fayad ZA (2010) RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J 24:1689–9169

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, Lindner JR (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284

    CAS  PubMed  Google Scholar 

  165. Lindner JR (2009) Molecular imaging of cardiovascular disease with contrastenhanced ultrasonography. Nat Rev Cardiol 6:475–481

    CAS  PubMed  Google Scholar 

  166. Villanueva FS, Wagner W (2006) Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:S26–S32

    Google Scholar 

  167. Alonso A, Della Martina A, Stroick M, Fatar M, Griebe M, Pochon S, Schneider M, Hennerici M, Allémann E, Meairs S (2007) Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 38:1508–1514

    CAS  PubMed  Google Scholar 

  168. Hagooly A, Almutairi A, Rossin R, Shokeen M, Ananth A, Anderson C, Abendschein D, Fréchet J, Welch M (2008) Evaluation of a RGD-dendrimer labeled with 76Br in hindlimb ischemia mouse model. J Nucl Med 49(Suppl 1):184

    Google Scholar 

  169. Taite LJ, West JL (2006) Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. J Biomat Sci Polym Ed 17:1159–1172

    CAS  Google Scholar 

  170. Makowski M, Jansen C, Botnar R, Kim WY, Maintz D, Spuentrup E (2010) Molecular MRI of atherosclerosis: from mouse to man. Medicamundi 54:14

    Google Scholar 

  171. Thukkani AK, Glaus C, Welch MJ (2010) Molecular imaging of vascular inflammation with nanoparticles. Curr Cardiovasc Imaging Rep 3:151–161

    Google Scholar 

  172. McAteer MA, Akhtar AM, von Zuhr Muhlen C, Choudhury RP (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, Moldovan NI, Ferrari M, Lee SC (2007) Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9:719–727

    PubMed  Google Scholar 

  174. Ferrara DE, Glaus C, Taylor WR (2008) Targeting vascular epitopes using quantum dots. Nanoparticles in biomedical imaging. Fundam Biomed Tech 102:443–461

    Google Scholar 

  175. Jayagopal A, Russ PK, Haselton FR (2007) Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 18:1424–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Kahn E, Vejux A, Menetrier F, Maiza C, Hammann A, Sequeira-Le GA, Frouin F, Tourneur Y, Brau F, Riedinger JM, Steinmetz E, Todd-Pokropek A, Lizard G (2006) Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy. Anal Quant Cytol Histol 28:14–26

    PubMed  Google Scholar 

  177. Prinzen L, Miserus RJHM, Dirksen A, Hackend TM, Deckers N, Bitsch NJ, Megens RT, Douma K, Heemskerk JW, Kooi ME, Frederik PM, Slaaf DW, van Zandvoort MA, Reutelingsperger CP (2007) Optical and magnetic resonance imaging of cell death and platelet activation using Annexin A5-functionalized quantum dot. Nano Lett 7:93–100

    CAS  PubMed  Google Scholar 

  178. Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    CAS  PubMed  Google Scholar 

  179. Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321

    CAS  PubMed  Google Scholar 

  180. Edelman ER, Adams DA, Karnovsky MJ (1990) Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci U S A 87:3773–3777

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Villa AE, Guzman LA, Chen W, Golomb G, Levy RJ, Topol EJ (1994) Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest 93:1243–1249

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Nathan A, Nugent MA, Edelman ER (1995) Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci U S A 92:8130–8134

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Nugent HM, Rogers C, Edelman ER (1999) Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 84:384–391

    CAS  PubMed  Google Scholar 

  184. Wilensky RL, March KL, Gradus-Pizlo I et al (1995) Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am Heart J 129:852–859

    CAS  PubMed  Google Scholar 

  185. Zhang L, Keogh S, Rickard CM (2013) Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective. Int J Nanomed 8:4453–4466

    Google Scholar 

  186. Harris DL, Graffagnini MJ (2007) Nanomaterials in medical devices: a snapshot of markets, technologies and companies. Nanotechnol Law Business 4:415–422

    Google Scholar 

  187. Martinez AW, Chaikof EL (2011) Microfabrication and nanotechnology in stent design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:256–268

    PubMed Central  CAS  PubMed  Google Scholar 

  188. McDowell G, Slevin M, Krupinski J (2011) Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective. Vasc Cell 3:8, http://www.vascularcell.com

    PubMed Central  PubMed  Google Scholar 

  189. Yin R-X, Yang D-Z, Wu J-Z (2014) Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 4:175–200

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Goh D, Tan A, Farhatnia Y, Rajadas J, Alavijeh MS, Seifalian AM (2013) Nanotechnology-based gene-eluting stents. Mol Pharm 10:1279–1298

    CAS  PubMed  Google Scholar 

  191. Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007) Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45:327–336

    PubMed  Google Scholar 

  192. de Mel A, Naghavi N, Cousins BG, Clatworthy I, Hamilton G, Darbyshire A, Seifalian AM (2014) Nitric oxide-eluting nanocomposite for cardiovascular implants. J Mater Sci Mater Med 25:917–929

    PubMed  Google Scholar 

  193. Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J (2011) Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med 236:20–29

    CAS  Google Scholar 

  194. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Shah S, Liu Y, Hu W, Gao J (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11:919–928

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Charoenphol P, Huang RB, Eniola-Adefeso O (2010) Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:1392–1402

    CAS  PubMed  Google Scholar 

  197. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:1–9

    Google Scholar 

  198. Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33:179–190

    CAS  PubMed  Google Scholar 

  199. Skorczewski T, Erickson LC, Fogelson AL (2013) Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys J 104:1764–1772

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP, Ataullakhanov FI (2011) Finite platelet size could be responsible for platelet margination effect. Biophys J 101:1835–1843

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler Thromb Vasc Biol 8:819–824

    CAS  Google Scholar 

  202. Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Daum N, Tscheka C, Neumeyer A, Schneider M (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:52–65

    CAS  PubMed  Google Scholar 

  204. Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 104:11901–11904

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Doshi N, Orje JN, Molins B, Smith JW, Mitragorti S, Ruggeri ZM (2012) Platelet mimetic particles for targeting thrombi inflowing blood. Adv Mater 24:3864–3869

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362

    CAS  PubMed  Google Scholar 

  209. Siepmann J, Siepmann F (2013) Mathematical model of drug dissolution. Int J Pharm 453:12–24

    CAS  PubMed  Google Scholar 

  210. Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75

    CAS  PubMed  Google Scholar 

  211. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    CAS  PubMed  Google Scholar 

  212. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10:197–209

    CAS  PubMed  Google Scholar 

  213. Shum P, Kim JM, Thompson DH (2001) Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 53:273–284

    CAS  PubMed  Google Scholar 

  214. Paasonen L, Sipilä T, Subrizi A, Laurinmäki P, Butcher SJ, Rappolt M, Yaghmur A, Urtti A, Yliperttula M (2010) Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release 147:136–143

    CAS  PubMed  Google Scholar 

  215. Peiris PM, Toy R, Abramowski A, Vicente P, Tucci S, Bauer L, Mayer A, Tam M, Doolittle E, Pansky J, Tran E, Lin D, Schiemann WP, Ghaghada KB, Griswold MA, Karathanasis E (2014) Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. J Control Release 173:51–58

    CAS  PubMed  Google Scholar 

  216. Marsh JN, Senpan A, Hu G, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond) 2:533–543

    CAS  Google Scholar 

  217. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337:738–742

    CAS  PubMed  Google Scholar 

  218. Holme MN, Fedotenko IA, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon PL, Ziegler A, Müller B, Saxer T, Zumbuehl A (2012) Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 7:536–543

    CAS  PubMed  Google Scholar 

  219. Modery-Pawlowski CL, Sen Gupta A (2014) Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 35:2568–2579

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Sen Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sen Gupta, A. (2016). Cardiovascular Nanomedicine: Materials and Technologies. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics