Skip to main content

Oligodendrocytes: Cells of Origin for White Matter Injury in the Developing Brain

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

A prominent pattern of brain injury in preterm born infants involves damage to white matter with impaired oligodendrocyte maturation. This results in diffuse deficits in myelination that are associated with later development of cerebral palsy. While numerous experimental animal models of perinatal white matter injury have been developed, they show a spectrum of effects. This review proposes that adopting a more standard approach to defining white matter injury is important for validating experimental findings against the bona fide human condition. This chapter will describe the pathology of perinatal white matter injury and a general methodological approach for assessing white matter injury experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49(4):480–491

    PubMed  Google Scholar 

  2. Volpe J (2008) Neurology of the newborn, 5th edn. Saunders Elsevier, Philadelphia, PA

    Google Scholar 

  3. Back SA et al (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–1312

    CAS  PubMed  Google Scholar 

  4. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    CAS  PubMed  Google Scholar 

  5. Kinney HC, Back SA (1998) Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol 5(3):180–189

    CAS  PubMed  Google Scholar 

  6. El Waly B et al (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145

    PubMed Central  PubMed  Google Scholar 

  7. Jakovcevski I et al (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3:5

    PubMed Central  PubMed  Google Scholar 

  8. Rakic S, Zecevic N (2003) Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41(2):117–127

    PubMed  Google Scholar 

  9. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7(1):11–18

    CAS  PubMed  Google Scholar 

  10. Young KM et al (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Lasry O, Shevell MI, Dagenais L (2010) Cross-sectional comparison of periventricular leukomalacia in preterm and term children. Neurology 74(17):1386–1391

    PubMed  Google Scholar 

  12. Li AM et al (2009) White matter injury in term newborns with neonatal encephalopathy. Pediatr Res 65(1):85–89

    PubMed  Google Scholar 

  13. Martinez-Biarge M et al (2012) White matter and cortical injury in hypoxic-ischemic encephalopathy: antecedent factors and 2-year outcome. J Pediatr 161(5):799–807

    PubMed  Google Scholar 

  14. Pagliano E et al (2007) Cognitive profiles and visuoperceptual abilities in preterm and term spastic diplegic children with periventricular leukomalacia. J Child Neurol 22(3):282–288

    PubMed  Google Scholar 

  15. Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410

    CAS  PubMed  Google Scholar 

  16. Billiards SS et al (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18(2):153–163

    PubMed Central  PubMed  Google Scholar 

  17. Buser JR et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71(1):93–109

    PubMed Central  PubMed  Google Scholar 

  18. Dubowitz LM, Bydder GM, Mushin J (1985) Developmental sequence of periventricular leukomalacia. Correlation of ultrasound, clinical, and nuclear magnetic resonance functions. Arch Dis Child 60(4):349–355

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Iida K, Takashima S, Ueda K (1995) Immunohistochemical study of myelination and oligodendrocyte in infants with periventricular leukomalacia. Pediatr Neurol 13(4):296–304

    CAS  PubMed  Google Scholar 

  20. Pierson CR et al (2007) Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 114(6):619–631

    PubMed Central  PubMed  Google Scholar 

  21. Deguchi K, Oguchi K, Takashima S (1997) Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 16(4):296–300

    CAS  PubMed  Google Scholar 

  22. Haynes RL et al (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63(6):656–661

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Hirayama A et al (2001) Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 20(2):87–91

    CAS  PubMed  Google Scholar 

  24. Marin-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol 56(3):219–235

    CAS  PubMed  Google Scholar 

  25. Counsell SJ et al (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112(1 Pt 1):1–7

    PubMed  Google Scholar 

  26. Hamrick SE et al (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145(5):593–599

    PubMed  Google Scholar 

  27. Inder TE et al (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143(2):171–179

    PubMed  Google Scholar 

  28. Miller SP et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147(5):609–616

    PubMed  Google Scholar 

  29. Woodward LJ et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355(7):685–694

    CAS  PubMed  Google Scholar 

  30. Riddle A et al (2011) Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol 70(3):493–507

    PubMed Central  PubMed  Google Scholar 

  31. Riddle A et al (2012) Differential susceptibility to axonopathy in necrotic and non-necrotic perinatal white matter injury. Stroke 43(1):178–184

    PubMed Central  PubMed  Google Scholar 

  32. Back SA et al (2005) Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 58(1):108–120

    CAS  PubMed  Google Scholar 

  33. Gerstner B et al (2008) Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci 28(5):1236–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Schmitz T et al (2011) Cellular changes underlying hyperoxia-induced delay of white matter development. J Neurosci 31(11):4327–4344

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Verney C et al (2012) Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropathol Exp Neurol 71(3):251–264

    CAS  PubMed  Google Scholar 

  36. Davidson JO et al (2014) Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep. PLoS One 9(5):e96558

    PubMed Central  PubMed  Google Scholar 

  37. Segovia KN et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63(4):520–530

    PubMed Central  PubMed  Google Scholar 

  38. Ritter J et al (2013) Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 33(21):8990–9002

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Jablonska B et al (2012) Oligodendrocyte regeneration after neonatal hypoxia requires FoxO1-mediated p27Kip1 expression. J Neurosci 32(42):14775–14793

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Scafidi J et al (2014) Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506(7487):230–234

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Yuen TJ et al (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158(2):383–396

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Tolcos M et al (2011) Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 232(1):53–65

    CAS  PubMed  Google Scholar 

  43. Reid MV et al (2012) Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 71(7):640–653

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Brehmer F et al (2012) Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One 7(11):e49023

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Favrais G et al (2011) Systemic inflammation disrupts the developmental program of white matter. Ann Neurol 70(4):550–565

    CAS  PubMed  Google Scholar 

  46. Nobuta H et al (2012) STAT3-mediated astrogliosis protects myelin development in neonatal brain injury. Ann Neurol 72(5):750–765

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    CAS  PubMed  Google Scholar 

  48. Franklin RJ, Gallo V (2014) The translational biology of remyelination: past, present, and future. Glia 62(11):1905–1915

    PubMed  Google Scholar 

  49. Fancy SP et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14(8):1009–1016

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Lyck L et al (2008) Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem 56(3):201–221

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2):311–327

    CAS  PubMed  Google Scholar 

  52. Dean JM et al (2011) Strain-specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Dev Neurosci 33(3-4):251–260

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Dean JM et al (2011) An organotypic slice culture model of chronic white matter injury with maturation arrest of oligodendrocyte progenitors. Mol Neurodegener 6:46

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Fancy SP et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Ruckh JM et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Back SA et al (2007) Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab 27(2):334–347

    CAS  PubMed  Google Scholar 

  57. Back SA et al (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22(2):455–463

    CAS  PubMed  Google Scholar 

  58. Craig A et al (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181(2):231–240

    PubMed  Google Scholar 

  59. Atik A et al (2014) Impact of daily high-dose caffeine exposure on developing white matter of the immature ovine brain. Pediatr Res 76(1):54–63

    CAS  PubMed  Google Scholar 

  60. Dean JM et al (2011) Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 70(5):846–856

    CAS  PubMed  Google Scholar 

  61. Drury PP et al (2014) nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology 83:62–70

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Rees S et al (2010) Erythropoietin is neuroprotective in a preterm ovine model of endotoxin-induced brain injury. J Neuropathol Exp Neurol 69(3):306–319

    CAS  PubMed  Google Scholar 

  63. Riddle A et al (2006) Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 26(11):3045–3055

    CAS  PubMed  Google Scholar 

  64. Kluver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12(4):400–403

    CAS  PubMed  Google Scholar 

  65. Page KM (1965) A stain for myelin using solochrome cyanin. J Med Lab Technol 22(4):224–225

    CAS  PubMed  Google Scholar 

  66. Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1(2):203–209

    CAS  PubMed  Google Scholar 

  67. Uchihara T (2007) Silver diagnosis in neuropathology: principles, practice and revised interpretation. Acta Neuropathol 113(5):483–499

    PubMed Central  PubMed  Google Scholar 

  68. Sosunov AA et al (2014) Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci 34(6):2285–2298

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Bachoo RM et al (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A 101(22):8384–8389

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    CAS  PubMed  Google Scholar 

  71. Tsai HH et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Zamanian JL et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Butovsky O et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201

    PubMed  Google Scholar 

  75. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    CAS  PubMed  Google Scholar 

  76. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399

    CAS  PubMed  Google Scholar 

  77. Hu X et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070

    CAS  PubMed  Google Scholar 

  78. Kigerl KA et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Miron VE et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Olah M et al (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321

    PubMed  Google Scholar 

  81. Wang G et al (2013) Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 33(12):1864–1874

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9(2):174–191

    CAS  PubMed  Google Scholar 

  83. Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16

    CAS  PubMed  Google Scholar 

  84. Chhor V et al (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Lund S et al (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 180(1-2):71–87

    CAS  PubMed  Google Scholar 

  86. Michelucci A et al (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210(1-2):3–12

    CAS  PubMed  Google Scholar 

  87. Faustino JV et al (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31(36):12992–13001

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Wilhelmsson U et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103(46):17513–17518

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Mouton P (2002) Principles and practices of unbiased stereology: an introduction for bioscientists. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  90. Haynes RL et al (2005) Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 484(2):156–167

    PubMed  Google Scholar 

  91. Yamamoto T, Hirano A (1986) A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer’s neurofibrillary tangles. Neuropathol Appl Neurobiol 12(1):3–9

    CAS  PubMed  Google Scholar 

  92. Duncan JR et al (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52(6):941–949

    CAS  PubMed  Google Scholar 

  93. Duncan JR et al (2006) Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Investig 13(2):87–96

    CAS  PubMed  Google Scholar 

  94. Martin R et al (1999) Neurofilament phosphorylation and axon diameter in the squid giant fibre system. Neuroscience 88(1):327–336

    CAS  PubMed  Google Scholar 

  95. Harrington EP et al (2010) Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol 68(5):703–716

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Nikolaev A et al (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Bendotti C et al (1988) Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice. Proc Natl Acad Sci U S A 85(10):3628–3632

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Otsuka N, Tomonaga M, Ikeda K (1991) Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res 568(1-2):335–338

    CAS  PubMed  Google Scholar 

  99. Rossiter JP et al (2000) Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol 26(4):342–346

    CAS  PubMed  Google Scholar 

  100. Sokolowski JD et al (2014) Caspase-mediated cleavage of actin and tubulin is a common feature and sensitive marker of axonal degeneration in neural development and injury. Acta Neuropathologica Commun 2:16

    Google Scholar 

  101. Kitada M, Rowitch DH (2006) Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 54(1):35–46

    PubMed  Google Scholar 

  102. Trapp BD et al (1988) Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem 51(3):859–868

    CAS  PubMed  Google Scholar 

  103. Montague P et al (1997) Developmental expression of the murine Mobp gene. J Neurosci Res 49(2):133–143

    CAS  PubMed  Google Scholar 

  104. Pedraza L et al (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18(4):579–589

    CAS  PubMed  Google Scholar 

  105. Huang X, Chen S, Tietz EI (1996) Immunocytochemical detection of regional protein changes in rat brain sections using computer-assisted image analysis. J Histochem Cytochem 44(9):981–987

    CAS  PubMed  Google Scholar 

  106. Watanabe J, Asaka Y, Kanamura S (1996) Relationship between immunostaining intensity and antigen content in sections. J Histochem Cytochem 44(12):1451–1458

    CAS  PubMed  Google Scholar 

  107. van der Loos CM (2008) Multiple immunoenzyme staining: methods and visualizations for the observation with spectral imaging. J Histochem Cytochem 56(4):313–328

    PubMed Central  PubMed  Google Scholar 

  108. Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3(2):141–150

    CAS  PubMed  Google Scholar 

  109. Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115(1):101–122

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 4(11):e7754

    PubMed Central  PubMed  Google Scholar 

  111. Drobyshevsky A et al (2014) Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia. Ann Neurol 75(4):533–541

    PubMed  Google Scholar 

Download references

Acknowledgments

MT is supported by the National Health and Medical Research Council of Australia and a Career Development Grant awarded by the Research Foundation, Cerebral Palsy Alliance. DHR is a HHMI investigator. JD is supported by grants from the Health Research Council of New Zealand, the Marsden Fund, and the Auckland Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Tolcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tolcos, M., Rowitch, D.H., Dean, J. (2016). Oligodendrocytes: Cells of Origin for White Matter Injury in the Developing Brain. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics