Skip to main content

Investigating Early Formation of the Cerebral Cortex by In Utero Electroporation: Methods and Protocols

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

Cortical development requires a strict balance between neuronal proliferation, differentiation, and cellular migration within restricted developmental stages. The precise spatiotemporal gene manipulation used in developmental studies can be achieved by in vitro or ex vivo experiments or by the generation of transgenic animals. However, these approaches have significant limitations when trying to investigate the origin and molecular regulation of early cortical neurons. In utero electroporation (IUE) is an informative cell labeling technique that provides the ability to label neural progenitor cells and their progeny in vivo with promoter-specific reporter constructs as well as to induce or repress gene expression in a spatially and temporally specific manner. Technical improvements of this method have allowed the targeting of multiple neural cell types, as well as the precise transfection of subpopulations of neurons at increasingly earlier embryonic stages. Furthermore, neuronal projection studies and the use of multiple electroporations in the same embryo have made it possible to examine processes occurring at different developmental stages and/or cortical areas and link their anatomy to their function. In this chapter, we present the latest advances of the in utero electroporation technique for the study of early formation of the cerebral cortex, together with a description of the necessary tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604

    Article  CAS  PubMed  Google Scholar 

  2. O’Leary DDM, Chou S-J, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269

    Article  PubMed  Google Scholar 

  3. Borello U, Pierani A (2010) Patterning the cerebral cortex: traveling with morphogens. Curr Opin Genet Dev 20:408–415

    Article  CAS  PubMed  Google Scholar 

  4. Caronia-Brown G, Yoshida M, Gulden F et al (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855–2865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chédotal A, Richards LJ (2010) Wiring the brain: the biology of neuronal guidance. Cold Spring Harb Perspect Biol 2:a001917

    Article  PubMed Central  PubMed  Google Scholar 

  6. Shimogori T, Grove EA (2005) Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J Neurosci 25:6550–6560

    Article  CAS  PubMed  Google Scholar 

  7. Assimacopoulos S, Kao T, Issa NP, Grove EA (2012) Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography. J Neurosci 32:7191–7201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  9. Tabata H, Nakajima K (2001) Efficient in utero gene transfer to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  10. Britanova O, De Juan RC, Cheung A et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392

    Article  CAS  PubMed  Google Scholar 

  11. Shibata M, Kurokawa D, Nakao H et al (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing foxg1 expression in mouse medial pallium. J Neurosci 28:10415–10421

    Article  CAS  PubMed  Google Scholar 

  12. Rouaux C, Arlotta P (2013) Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 15:214–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Srivatsa S, Parthasarathy S, Britanova O et al (2014) Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:1–15

    Article  Google Scholar 

  14. Faux C, Rakic S, Andrews W, Britto JM (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20:168–189

    Article  CAS  PubMed  Google Scholar 

  15. Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143:151–158

    Article  CAS  PubMed  Google Scholar 

  16. Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S et al (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24:2286–2295

    Google Scholar 

  17. Bielle F, Griveau A, Narboux-Nême N et al (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012

    Article  CAS  PubMed  Google Scholar 

  18. Huilgol D, Udin S, Shimogori T et al (2013) Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 16:157–165

    Article  CAS  PubMed  Google Scholar 

  19. Remedios R, Huilgol D, Saha B et al (2007) A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci 10:1141–1150

    Article  CAS  PubMed  Google Scholar 

  20. Suárez R, Fenlon LR, Marek R et al (2014) Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron 82:1289–1298

    Article  PubMed  Google Scholar 

  21. Zhou J, Wen Y, She L et al (2013) Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci U S A 110:E2714–E2723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sahara S, Kawakami Y, Izpisua Belmonte J, O’Leary DD (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:1–22

    Article  Google Scholar 

  23. Yaguchi M, Ohashi Y, Tsubota T et al (2013) Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Hum Gene Ther Methods 24:333–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yoshida A, Yamaguchi Y, Nonomura K et al (2010) Simultaneous expression of different transgenes in neurons and glia by combining in utero electroporation with the Tol2 transposon-mediated gene transfer system. Genes Cells 15:501–512

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Chen F, Maher BJ, LoTurco JJ (2014) PiggyBac transposon-mediated cellular transgenesis in mammalian forebrain by in utero electroporation. Cold Spring Harb Protoc 2014: 741–749

    Article  PubMed  Google Scholar 

  26. Loulier K, Barry R, Mahou P et al (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81:505–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Suárez and L. Fenlon for their input on the manuscript and providing histological images; Queensland Brain Institute (QBI) Microscopy Facility for microscopy assistance; the University of Queensland Biological Resources and QBI animal team for animal support. PK was supported by a National Health and Medical Research Council (NHMRC, Australia) Early Career (CJ Martin) Fellowship, GA was supported by a Becas Chile Fellowship, and LJR was supported by an NHMRC Principal Research Fellowship. IG was supported by NHMRC project grant GNT1048849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kozulin, P., Almarza, G., Gobius, I., Richards, L.J. (2016). Investigating Early Formation of the Cerebral Cortex by In Utero Electroporation: Methods and Protocols. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics