Skip to main content

Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

Solid-state NMR spectroscopy (SSNMR) is an established and invaluable tool for the study of amyloid fibril structure with atomic-level detail. Optimization of the homogeneity and concentration of fibrils enhances the resolution and sensitivity of SSNMR spectra. Here, we present a fibrillization and fibril processing protocol, starting from purified monomeric α-synuclein, that enables the collection of high-resolution SSNMR spectra suitable for site-specific structural analysis. This protocol does not rely on any special features of α-synuclein and should be generalizable to any other amyloid protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

    Article  CAS  PubMed  Google Scholar 

  3. Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wasmer C, Lange A, Van Melckebeke H et al (2008) Amyloid fibrils of the HET-s(218-289) prion form a solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  5. Van Melckebeke H, Wasmer C, Lange A et al (2010) Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    Article  PubMed  Google Scholar 

  6. Comellas G, Lemkau LR, Zhou DH et al (2012) Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134:5090–5099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Comellas G, Lemkau LR, Nieuwkoop AJ et al (2011) Structured regions of α-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 411:881–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bousset L, Pieri L, Ruiz-Arlandis G et al (2013) Structural and functional characterization of two α-synuclein strains. Nature Commun 4:2575

    Article  Google Scholar 

  9. Volpicelli-Daley LA, Luk KC, Lee VMY (2014) Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protocols 9:2135–2146

    Article  CAS  PubMed  Google Scholar 

  10. Kloepper KD, Hartman KL, Ladror DT et al (2007) Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of α-synuclein fibrils. J Phys Chem B 111:13353–13356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Castellani F, van Rossum B, Diehl A et al (2002) Structure of a protein determined by solid-state magic-angle- spinning NMR spectroscopy. Nature 420:98–102

    Article  CAS  PubMed  Google Scholar 

  12. Lemkau LR, Comellas G, Kloepper KD et al (2012) Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287:11526–11532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lemkau LR, Comellas G, Lee SW et al (2013) Site-specific perturbations of α-synuclein fibril structure by the Parkinson’s disease associated mutations A53T and E46K. PloS one 8:e49750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kloepper KD, Woods WS, Winter KA et al (2006) Preparation of α-synuclein fibrils for solid-state NMR: expression, purification, and incubation of wild-type and mutant forms. Protein Expr Purif 48:112–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01-GM073770 and P50-NS053488. M.D.T. and A.M.B. were supported by NIH Training Grant PHS 5T32 GM008276 and J.M.C. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Rienstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tuttle, M.D., Courtney, J.M., Barclay, A.M., Rienstra, C.M. (2016). Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics