Skip to main content

Regulatory Actions of Glucocorticoid Hormones: From Organisms to Mechanisms

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 872))

Abstract

The history of glucocorticoid hormone research is an excellent example of “bedside to bench” investigation. It started with two very insightful clinical observations. Thomas Addison described the syndrome of what came to be known as adrenal hormone insufficiency and Harvey Cushing the syndrome of glucocorticoid hormone excess. These dramatic and life-threatening conditions spawned 150 years of active research that has involved many disciplines; indeed some of the fundamental observations of molecular biology are the result of this work. We have a fundamental knowledge of how glucocorticoids regulate gene transcription, their major effect. The challenge facing current and future investigators is to discern how to use this information to make these powerful therapeutic agents safer and more effective.

Dedication 

We dedicate this chapter to Gordon M. Tomkins. Gordon was a visionary who, after direct exposure to the Paris bacterial genetics group in the early 1960s, quite clearly foresaw the field of mammalian gene regulation. He was one of the founders of the discipline now known as Molecular Endocrinology. Most importantly, as regards the topic of this book, his scientific passion was glucocorticoid action. A generation of young scientists was fortunate to spend time in his laboratory; many others were influenced by his writings, entertaining lectures and the informal talks he gave during his many visits to universities and research institutes. Gordon was a direct mentor to two of us, D.K.G. and K.R.Y., and a second generation mentor to J.-C.W.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This effect helps explain an observation made more than 50 years ago. Wolf et al. showed that, in vitamin A deficient rats, hepatic cholesterol and fatty acid synthesis, the citric acid cycle, glycogen metabolism and glycolysis were all normal. Gluconeogenesis, however, was markedly impaired [104].

  2. 2.

    The GC accessory factor elements in the PEPCK gene promoter were originally referred to as AF1-3. As the designation of the transactivation domains in nuclear receptors became known as AF1 and AF2, the DNA elements in the PEPCK gene were designated gAF1-3.

  3. 3.

    All the experiments described in this section were performed using this cell line, which was derived from a rat hepatoma [42].

References

  1. Bayliss WM, Starling FH. The movements and innervation of the small intestine. J Physiol. 1901;26:125–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bayliss WM, Starling FH. The mechanism of pancreatic secretion. J Physiol. 1902;28:325–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Addison T. On the constitutional and local effects of disease of the suprarenal capsule. In: A collection of the published writings of the late Thomas Addison MD. London: New Sydenham Society; 1868.

    Google Scholar 

  4. Bernard C. Remarques sur le sécrétion du sucre dans la foie, faites à l’ occasion de la communication de M Lehman. CR Acad Sci Paris. 1855;40:589–92.

    Google Scholar 

  5. Cannon WB. The wisdom of the body. New York: WW Norton; 1932.

    Google Scholar 

  6. Henderson J. Ernest starling and “hormones”: an historical commentary. J Endocrinol. 2005;184:5–10.

    CAS  PubMed  Google Scholar 

  7. Starling FH. Croonian lecture: On the chemical correlation of the functions of the body. Lancet. 1905;2:339–41.

    CAS  Google Scholar 

  8. Swingle WW, Pfiffner JJ. The revival of comatose adrendectomized cats with an extract of the suprarenal cortex. Science. 1930;72:75–6.

    CAS  PubMed  Google Scholar 

  9. Hartman FA, Brownell KA. The hormone of the adrenal cortex. Science. 1930;72:76.

    CAS  PubMed  Google Scholar 

  10. Kendall EC. The development of cortisone as a therapeutic agent. In: Nobel lectures in physiology or medicine: 1942–1962. Amsterdam: Elsevier; 1964. p. 270–288.

    Google Scholar 

  11. Reichstein T. Chemistry of the adrenal cortex hormones. In: Nobel lectures in physiology or medicine: 1942–1962. Amsterdam: Elsevier; 1964. p. 291–308.

    Google Scholar 

  12. Sarett LH. A new method for the preparation of 17α-hydroxy-20-ketopregnanes. J Am Chem Soc. 1948;70:1454–8.

    CAS  PubMed  Google Scholar 

  13. Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp. 1932;50(4):137–95.

    Google Scholar 

  14. Hench PS. The reversibility of certain rheumatic and non-rheumatic conditions by the use of the cortisone or of the pituitary adrenocorticotropic hormone. In: Nobel lectures in physiology or medicine 1942–1962. Amsterdam: Elsevier; 1964. p. 311–43.

    Google Scholar 

  15. de Réaumur RAF. Observations sur la digestion des oiseaux. Hist Acad Roy Sci. 1752;266:461.

    Google Scholar 

  16. Payen A, Persoz J-F. Memoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels. Ann Chim Phys. 1833;53:73–92.

    Google Scholar 

  17. Kühne W. On the behavior of various organized and so-called unformed ferments. Verb. d. Nat. Med. Ver. Heidelberg. 1877;1:190–8.

    Google Scholar 

  18. Buchner E. Cell-free fermentation. In: Nobel lectures in chemistry 1901–1921. Amsterdam: Elsevier; 1966. p. 103–20.

    Google Scholar 

  19. Sumner JB. The chemical nature of enzymes. In: Nobel lectures in chemistry 1901–1921. Amsterdam: Elsevier; 1964. p. 114–21.

    Google Scholar 

  20. Northrop JH. The chemical nature of enzymes. In: Nobel lectures in chemistry 1942–1962. Amsterdam: Elsevier; 1964. p. 124–34.

    Google Scholar 

  21. Stanley WM. The chemical nature of enzymes. In: Nobel lectures in chemistry 1942–1962. Amsterdam: Elsevier; 1964. p. 138–57.

    Google Scholar 

  22. Levine R. Insulin action: 1948–80. Diabetes Care. 1981;4(1):38–44.

    CAS  PubMed  Google Scholar 

  23. Schoenheimer R. The dynamic state of body constituents. Cambridge: Harvard University Press; 1942.

    Google Scholar 

  24. Shemin D, Rittenberg D. Life span of human red blood cell. J Biol Chem. 1946;166:627–36.

    CAS  PubMed  Google Scholar 

  25. Ballou JE, Thompson RC. Studies of metabolic turnover with tritium as a tracer: V. The predominantly non-dynamic state of body constituents in the rat. J Biol Chem. 1956;223:795–809.

    CAS  PubMed  Google Scholar 

  26. Dubos RJ. The adaptive production of enzymes by bacteria. Bacteriol Rev. 1940;4(1):1–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Monod J. The phenomenon of enzymatic adaptation and its bearings on problems of genetics and cellular differentiation. Growth. 1947;11:223–89.

    CAS  Google Scholar 

  28. Spiegelman S. Nuclear and cytoplasmic factors controlling enzymatic constitution. Cold Spring Harbor Symp Quant Biol. 1946;11:256–77.

    Google Scholar 

  29. Knox WE, Mehler AH. Adaptive increase of tryptophan peroxidase-oxidase system of liver. Science. 1951;113:237–8.

    CAS  PubMed  Google Scholar 

  30. Knox WE. Two mechanisms which increase in vivo liver tryptophan peroxidase activity: specific enzyme adaptation and stimulation of the pituitary-adrenal system. Br J Exp Pathol. 1951;32(5):462–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 1946;6:117–230.

    CAS  PubMed  Google Scholar 

  32. Thompson JF, Mikuta ET. Effect of total body x-irradiation on tryptophan peroxidase activity of rat liver. Proc Soc Exp Biol Med. 1954;85(1):29–32.

    Google Scholar 

  33. Knox WE, Auerbach VH, Lin ECC. Enzymatic and metabolic adaptation in animals. Physiol Rev. 1956;36:164–254.

    CAS  PubMed  Google Scholar 

  34. Lin ECC, Knox WE. Adaption of the rat liver-tyrosine-alpha-ketoglutarate transaminase. Biochim Biophys Acta. 1957;26:85–8.

    CAS  PubMed  Google Scholar 

  35. Kenney FT. Induction of tyrosine-α-ketoglutarate transaminase in rat liver. II: enzyme purification and preparation of antitransaminase. J Biol Chem. 1962;237(5):1605–9.

    CAS  PubMed  Google Scholar 

  36. Feigelson P, Greengard O. Immunochemical evidence for increased titers of liver tryptophan pyrrolase during substrate and hormonal enzyme induction. J Biol Chem. 1962;237:3714–7.

    CAS  Google Scholar 

  37. Schimke RT. Control of enzyme levels in mammalian issues. Adv Enzymol Relat Areas Mol Biol. 1973;37:135–87.

    CAS  PubMed  Google Scholar 

  38. Schimke RT, Sweeney EW, Berlin CM. The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J Biol Chem. 1965;240:322–31.

    CAS  PubMed  Google Scholar 

  39. Kenney FT. Induction of tyrosine-α-ketoglutarate transaminase in rat liver: IV. Evidence for an increase in the rate of enzyme synthesis. J Biol Chem. 1962;237:3495–8.

    CAS  PubMed  Google Scholar 

  40. Shrago E, Lardy HA, Nordlie RC, Foster DO. Metabolic and hormonal control of phosphoenolpyruvate carboxykinase and malic enzyme in rat liver. J Biol Chem. 1963;238:3188–92.

    CAS  PubMed  Google Scholar 

  41. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of protein. J Mol Biol. 1961;3:318–56.

    CAS  PubMed  Google Scholar 

  42. Pitot H, Peraino C, Morse P, Potter V. Hepatomas in tissue culture compared with adapting liver in vivo. Natl Cancer Inst Monogr. 1964;13:229–45.

    CAS  PubMed  Google Scholar 

  43. Thompson EB, Tomkins GM, Curran JF. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966;56:296–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Granner DK, Hayashi S-I, Thompson EB, Tomkins GM. Stimulation of tyrosine aminotransferase synthesis by dexamethasone phosphate in cell culture. J Mol Biol. 1968;35:291–301.

    CAS  PubMed  Google Scholar 

  45. Granner DK, Beale EG. Regulation of the synthesis of tyrosine aminotransferase and phosphoenolpyruvate carboxykinase by glucocorticoid hormones. In: Biochemical actions of hormones, vol. 12. New York: Academic; 1985. p. 89–138.

    Google Scholar 

  46. Sasaki K, Cripe T, Koch S, et al. Multihormonal regulation of PEPCK gene transcription: the dominant role of insulin. J Biol Chem. 1984;259:15242–51.

    CAS  PubMed  Google Scholar 

  47. Greengard O, Acs G. The effect of actinomycin on the substrate and hormonal induction of liver enzymes. Biochim Biophys Acta. 1962;61:652–3.

    CAS  Google Scholar 

  48. Danesch U, Hashimoto S, Renkawitz R, Schütz G. Transcriptional regulation of the tryptophan oxygenase gene in rat liver by glucocorticoids. J Biol Chem. 1983;258(8):4750–3.

    CAS  PubMed  Google Scholar 

  49. Schmid E, Schmid W, Jantzen M, Mayer D, Jastorff B, Schütz G. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem. 1987;165(3):499–506.

    CAS  PubMed  Google Scholar 

  50. Lucas PC, O’Brien RM, Mitchell JA, et al. A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene. Proc Natl Acad Sci U S A. 1991;88:2184–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Talwar GP, Segal SJ, Evans A, Davison OW. The binding of estradiol in the uterus: a mechanism for depression of RNA synthesis. Proc Natl Acad Sci U S A. 1964;52:1059–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Rousseau GG, Baxter JD. Glucocorticoid receptors. In: Glucocorticoid hormone action. Heidelberg: Springer; 1979. p. 49–77.

    Google Scholar 

  53. Baxter JD. Glucocorticoid hormone action. Pharmacol Ther B. 1976;2(3):605–59.

    CAS  PubMed  Google Scholar 

  54. Wrange O, Carlstedt-Duke J, Gustafsson JǺ. Purification of the glucocorticoid receptor from rat liver cytosol. J Biol Chem. 1979;254:9284–90.

    Google Scholar 

  55. Wrange O, Okret S, Radojćić M, Carlstedt-Duke J, Gustafsson J. Characterization of the purified activated glucocorticoid receptor from rat liver cytosol. J Biol Chem. 1984;259:4534–41.

    Google Scholar 

  56. Hollenberg SM, Moldenhauer C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318:635–41.

    CAS  PubMed  Google Scholar 

  57. Miesfeld R, Rusconi S, Godowski PJ, et al. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell. 1986;46(3):389–99.

    CAS  PubMed  Google Scholar 

  58. Danielson M, Northrop JP, Ringold GM. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J. 1986;5(10):2513–22.

    Google Scholar 

  59. Yamamoto KR, Gehring U, Stampfer MR, Sibley CH. Genetic approaches to steroid hormone action. Recent Prog Horm Res. 1976;32:3–32.

    CAS  PubMed  Google Scholar 

  60. Yamamoto KR. Steriod hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Annu Rev Genet. 1985;19:209–52.

    CAS  PubMed  Google Scholar 

  61. Ringold GM, Yamamoto KR, Tomkins GM, Bishop M, Varmus HE. Dexamethasone-mediated induction of mouse mammary tumor virus RNA: a system for studying glucocorticoid action. Cell. 1975;6(3):299–305.

    CAS  PubMed  Google Scholar 

  62. Ringold GM, Yamamoto KR, Bishop JM, Varmus HE. Glucocorticoid-stimulated accumulation of mouse mammary tumor virus RNA: increased rate of synthesis of viral RNA. Proc Natl Acad Sci U S A. 1977;74(7):2879–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ucker DS, Ross SR, Yamamoto KR. Mammary tumor virus DNA contains sequences required for its hormone-regulated transcription. Cell. 1981;27:257–66.

    CAS  PubMed  Google Scholar 

  64. Huang AL, Ostrowski MC, Berard D, Hager GL. Glucocorticoid regulation of the Ha-Mu SV p21 gene conferred by sequences from mouse mammary tumor virus. Cell. 1981;27:245–55.

    CAS  PubMed  Google Scholar 

  65. Yamamoto KR, Chandler VL, Ross SR, Ucker DS, Ring JC, Feinstein SC. Integration and activity of mammary tumor virus genes: regulation by hormone receptors and chromosomal position. Cold Spring Harb Symp Quant Biol. 1981;45:687–97.

    CAS  PubMed  Google Scholar 

  66. Groner B, Kennedy N, Rahmsdorf U, Herrlich P, Van Ooyen A, Hynes NE. Introduction of a proviral MMTV gene and a chimeric MMTV-tk gene into L cells results in their glucorticoid responsive expression. In: Hormones and cell regulation. Amsterdam: Elsevier Biomedical Press; 1982. p. 217–28.

    Google Scholar 

  67. Payvar R, Wrange O, Carlstedt-Duke J, Okret S, Gustafsson JǺ, Yamamoto KR. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc Natl Acad Sci U S A. 1981;78:6628–32.

    Google Scholar 

  68. Payvar F, Firestone GL, Ross S, et al. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA. J Cell Biochem. 1982;19:241–7.

    CAS  PubMed  Google Scholar 

  69. Govindan MV, Spiess E, Majors J. Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro. Proc Natl Acad Sci U S A. 1982;79(17):5157–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Geisse S, Scheidereit C, Westphal HM, Hynes NE, Groner B, Beato M. Glucocorticoid receptors recognize DNA sequences in and around murine mammary tumour virus DNA. EMBO J. 1982;1(12):1613–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Pfahl M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region. Cell. 1982;31:475–82.

    CAS  PubMed  Google Scholar 

  72. Chandler VL, Maler BA, Yamamoto KR. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell. 1983;33(2):489–99.

    CAS  PubMed  Google Scholar 

  73. Yamamoto KR. Transcriptional enhancement by specific regulatory protein: DNA complexes. In: Ginsberg HS, Vogel HJ, editors. Transfer and expression of eukaryotic genes. New York: Academic; 1983. p. 79–92.

    Google Scholar 

  74. Miesfeld R, Okret S, Wikstrom AC, Wrange O, Gustafsson JA, Yamamoto KR. Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature. 1984;312(5996):779–81.

    CAS  PubMed  Google Scholar 

  75. Carlstedt-Duke J, Okret S, Wrange O, Gustafsson JǺ. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains. Proc Natl Acad Sci U S A. 1982;79:4260–4.

    Google Scholar 

  76. Westphal HM, Moldenhauer G, Beato M. Monoclonal antibodies to the rat liver glucocorticoid receptor. EMBO J. 1982;1:1467–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–95.

    CAS  PubMed  Google Scholar 

  78. Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci. 2004;1024:86–101.

    CAS  PubMed  Google Scholar 

  79. Hollenberg SM, Evans RM. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell. 1988;55:899–906.

    CAS  PubMed  Google Scholar 

  80. Galliher-Beckley AJ, Cidlowski JA. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life. 2009;61(10):979–86.

    CAS  PubMed  Google Scholar 

  81. Carson-Jurica MA, Schrader WT, O’Malley BW. Steroid receptor family: structure and functions. Endocr Rev. 1990;11(2):201–20.

    CAS  PubMed  Google Scholar 

  82. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991;352:497–505.

    CAS  PubMed  Google Scholar 

  83. Mader S, Kumar V, de Verneuil H, Chambon P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature. 1989;339:271–4.

    Google Scholar 

  84. Green S, Chambon P. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature. 1987;325(6099):75–8.

    CAS  PubMed  Google Scholar 

  85. Godowski PJ, Picard D, Yamamoto KR. Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science. 1988;241(4867):812–6.

    CAS  PubMed  Google Scholar 

  86. Watson LC, Kuchenbecker KM, Schiller BJ, Gross JD, Pufall MA, Yamamoto KR. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol. 2013;20(7):876–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Danielson M. Structure and function of the glucocorticoid receptor. In: Parker MG, editor. Nuclear hormone receptors: molecular mechanisms, cellular functions, clinical abnormalities. London: Academic; 1991. p. 39–78.

    Google Scholar 

  88. Picard D, Salser SJ, Yamamoto KR. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell. 1988;54(7):1073–80.

    CAS  PubMed  Google Scholar 

  89. LaBaer J, Yamamoto KR. Analysis of the DNA-binding affinity, sequence specificity and context dependence of the glucocorticoid receptor zinc finger region. J Mol Biol. 1994;239:664–88.

    CAS  Google Scholar 

  90. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009;324(5925):407–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Miner JN, Yamamoto KR. Regulatory crosstalk at composite response elements. Trends Biochem Sci. 1991;16:423–6.

    CAS  PubMed  Google Scholar 

  92. So AY, Cooper SB, Feldman BJ, Manuchehri M, Yamamoto KR. Conservation analysis predicts in vivo occupancy of glucocorticoid receptor-binding sequences at glucocorticoid-induced genes. Proc Natl Acad Sci U S A. 2008;105(15):5745–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990;249(4974):1266–72.

    CAS  PubMed  Google Scholar 

  94. Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990;62(6):1189–204.

    CAS  PubMed  Google Scholar 

  95. Miner JN, Diamond MI, Yamamoto KR. Joints in the regulatory lattice: composite regulation by steroid receptor-AP1 complexes. Cell Growth Differ. 1991;2(10):525–30.

    CAS  PubMed  Google Scholar 

  96. Luecke HF, Yamamoto KR. The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Genes Dev. 2005;19(9):1116–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Truss M, Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993;14(4):459–79.

    CAS  PubMed  Google Scholar 

  98. Zaret KS, Yamamoto KR. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell. 1984;38(1):29–38.

    CAS  PubMed  Google Scholar 

  99. Richard-Foy H, Hager GL. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 1987;6(8):2321–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Brüggemeier U, Kalff M, Franke S, Scheidereit C, Beato M. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell. 1991;64(3):565–72.

    PubMed  Google Scholar 

  101. Lucas PC, Granner DK. Hormone response domains in gene transcription. Annu Rev Biochem. 1992;61:1131–73.

    CAS  PubMed  Google Scholar 

  102. Yamamoto KR, Darimont BD, Wagner RL, Iniguez-Liuhi JA. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb Symp Quant Biol. 1998;63:587–98.

    CAS  PubMed  Google Scholar 

  103. Chodankar R, Wu DY, Schiller BJ, Yamamoto KR, Stallcup MR. Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc Natl Acad Sci U S A. 2014;111(11):4007–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Wolf G, Lane MD, Johnson BC. Studies on the function of vitamin A in metabolism. J Biol Chem. 1957;225:995–1008.

    CAS  PubMed  Google Scholar 

  105. Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JǺ, Granner DK. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1990;10(9):4712–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hall RK, Sladek FM, Granner DK. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995;92(2):412–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang JC, Stromstedt PE, O’Brien PM, Granner DK. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Mol Endocrinol. 1996;10:794–800.

    CAS  PubMed  Google Scholar 

  108. Wang JC, Stafford JM, Scott DK, Sutherland C, Granner DK. The molecular physiology of hepatic nuclear factor 3 (HNF3) in the regulation of gluconeogenesis. J Biol Chem. 2000;275:14717–21.

    CAS  PubMed  Google Scholar 

  109. Scott DK, Mitchell JA, Granner DK. The orphan receptor COUP-TF binds to a third glucocorticoid accessory factor element within the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 1996;271:31909–14.

    CAS  PubMed  Google Scholar 

  110. Hall RK, Wang XL, George L, Koch SR, Granner DK. Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect. Mol Endocrinol. 2007;21(2):550–63.

    CAS  PubMed  Google Scholar 

  111. Stafford JM, Wilkinson JC, Beechem JM, Granner DK. Accessory factors facilitate the binding of glucocorticoid receptor to the PEPCK gene promoter. J Biol Chem. 2001;276(43):39885–91.

    CAS  PubMed  Google Scholar 

  112. Wang JC, Stafford JM, Granner DK. SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. J Biol Chem. 1998;273:30847–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wang JC, Stromstedt PE, Sugiyama T, Granner DK. The phosphoenolpyruvate carboxykinase gene glucocorticoid response unit: identification of the functional domains of accessory factors HNF3β and HNF4 and the necessity of proper alignment of their cognate binding sites. Mol Endocrinol. 1999;13:604–18.

    CAS  PubMed  Google Scholar 

  114. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131–8.

    CAS  PubMed  Google Scholar 

  115. Lucas PC, Forman BM, Samuels HH, Granner DK. Specificity of a retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promotor: consequences of both retinoic acid and thyroid hormone receptor binding. Mol Cell Biol. 1991;11(10):5164–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Short JM, Wynshaw-Boris A, Short HP, Hanson RW. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. J Biol Chem. 1986;261:9721–6.

    CAS  PubMed  Google Scholar 

  117. Bokar JA, Roesler WJ, Vandenbark GR, Kaetzel DM, Hanson RW, Nilson JH. Characterization of the cAMP responsive elements from the genes for the alpha-subunit of glycoprotein hormones and phosphoenolpyruvate carboxykinase (GTP). Conserved features of nuclear protein binding between tissues and species. J Biol Chem. 1988;263(36):19740–7.

    CAS  PubMed  Google Scholar 

  118. O’Brien RM, Bonovich MT, Forest CD, Granner DK. Signal transduction convergence: phorbol esters and insulin inhibit phosphoenolpyruvate carboxykinase gene transcription through the same 10-base-pair sequence. Proc Natl Acad Sci U S A. 1991;88(15):6580–4.

    PubMed Central  PubMed  Google Scholar 

  119. Matsumoto M, Pocai A, Rossetti L, DePinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6:208–16.

    CAS  PubMed  Google Scholar 

  120. Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011;469(7330):368–73.

    CAS  PubMed  Google Scholar 

  121. Kwak H, Fuda NJ, Core LJ, Lis JT. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 2013;339(6122):950–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ucker DS, Yamamoto KR. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J Biol Chem. 1984;259(12):7416–20.

    CAS  PubMed  Google Scholar 

  123. Peterson DD, Koch SR, Granner DK. The 3′ noncoding region of phosphoenolpyruvate carboxykinase mRNA contains a glucocorticoid-responsive mRNA-stabilizing element. Proc Natl Acad Sci U S A. 1989;86:7800–4.

    Google Scholar 

  124. Bittencourt D, Wu D-Y, Jeong KW, et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci U S A. 2012;109(48):19673–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Engel KB, Yamamoto KR. The glucocorticoid receptor and the coregulator Brm selectively modulate each other’s occupancy and activity in a gene-specific manner. Mol Cell Biol. 2011;31(16):3267–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Yu C-Y, Mayba O, Lee JV, et al. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One. 2010;5:1–13.

    Google Scholar 

  127. So AY-L, Chaivorapol C, Bolton E, et al. Determinants of cell-and gene-specific transcriptional regulation by the glucocorticold receptor. PLoS Genet. 2007;94:1–16.

    Google Scholar 

  128. Kuo T, Lew M, Mayba O, et al. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A. 2012;109(28):11160–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Grontved L, John S, Baek S, Liu Y, et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 2013;32(11):1568–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43(3):264–8.

    CAS  PubMed  Google Scholar 

  131. Polman JA, Welten JE, Bosch DS, et al. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci. 2012;13:118.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Schiller BJ, Chodankar R, Watson LC, Stallcup MR, Yamamoto KR. Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol. 2014;15(7):418.

    PubMed Central  PubMed  Google Scholar 

  133. So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci U S A. 2009;106(41):17582–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329(5997):1355–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci. 2015;40(1):58–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Stacie Vik and Allison McQueen for their assistance in preparing the manuscript and Michael Stallcup for his incisive comments and encouragement during its preparation. We thank the many people who, over the years, performed experiments in our laboratories. All of their contributions could not be discussed, but all are a part of this story. We also are grateful to the legion of colleagues who, over years of their own work, and in formal and informal discussions, made our participation in this field so interesting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl K. Granner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Granner, D.K., Wang, JC., Yamamoto, K.R. (2015). Regulatory Actions of Glucocorticoid Hormones: From Organisms to Mechanisms. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_1

Download citation

Publish with us

Policies and ethics