Skip to main content

Using the Zebrafish Model to Study T Cell Development

  • Protocol
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1323))

Abstract

While zebrafish have for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. These unique attributes, and the methods by which they can be exploited to investigate the role of novel genes in T cell development, are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amatruda JF, Zon LI (1999) Dissecting hematopoiesis and disease using the zebrafish. Dev Biol 216(1):1–15

    Article  CAS  PubMed  Google Scholar 

  2. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  CAS  PubMed  Google Scholar 

  3. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379

    Article  CAS  PubMed  Google Scholar 

  4. Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19(19):2331–2342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8(1):97–108

    Article  CAS  PubMed  Google Scholar 

  6. Bajoghli B, Aghaallaei N, Hess I, Rode I, Netuschil N, Tay BH, Venkatesh B, Yu JK, Kaltenbach SL, Holland ND, Diekhoff D, Happe C, Schorpp M, Boehm T (2009) Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell 138(1):186–197

    Article  CAS  PubMed  Google Scholar 

  7. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25(6):963–975

    Article  CAS  PubMed  Google Scholar 

  8. Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein HM, Zapata AG, Boehm T (2006) Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol 177(4):2463–2476

    Article  CAS  PubMed  Google Scholar 

  9. Willett CE, Cherry JJ, Steiner LA (1997) Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 45(6):394–404

    Article  CAS  PubMed  Google Scholar 

  10. Langenau DM, Zon LI (2005) The zebrafish: a new model of T-cell and thymic development. Nat Rev Immunol 5(4):307–317

    Article  CAS  PubMed  Google Scholar 

  11. Ma D, Wei Y, Liu F (2013) Regulatory mechanisms of thymus and T cell development. Dev Comp Immunol 39(1-2):91–102

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Duc AC, Rao S, Sun XL, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL (2013) Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 24(4):411–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C, Herbomel P (2008) Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111(3):1147–1156

    Article  CAS  PubMed  Google Scholar 

  14. Bertrand JY, Kim AD, Teng S, Traver D (2008) CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135(10):1853–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hess I, Boehm T (2012) Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity 36(2):298–309

    Article  CAS  PubMed  Google Scholar 

  16. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102(17):6068–6073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 101(19):7369–7374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220

    Article  CAS  PubMed  Google Scholar 

  19. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  20. Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T (2004) An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol 271(2):416–430

    Article  CAS  PubMed  Google Scholar 

  21. Link V, Shevchenko A, Heisenberg CP (2006) Proteomics of early zebrafish embryos. BMC Dev Biol 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  22. Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26(6):759–772

    Article  CAS  PubMed  Google Scholar 

  23. Gupta S, Zhu H, Zon LI, Evans T (2006) BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development 133(11):2177–2187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the support and help from Dr. Jennifer Rhodes, Allison Ulrich and Alison N. Bilbee for the zebrafish work. We gratefully acknowledge the assistance of the following core facilities of the Fox Chase Cancer Center: Flow Cytometry, DNA Sequencing, Imaging and Laboratory Animal/Zebrafish. This work was supported by NIH grants AI081814, AI073920, NIH core grant P01CA06927, Center grant P30-DK-50306. Y.Z. is a W.J. Avery Postdoctoral Fellow of Fox Chase Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Y., Wiest, D.L. (2016). Using the Zebrafish Model to Study T Cell Development. In: Bosselut, R., S. Vacchio, M. (eds) T-Cell Development. Methods in Molecular Biology, vol 1323. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2809-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2809-5_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2808-8

  • Online ISBN: 978-1-4939-2809-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics