Skip to main content
Book cover

Rab GTPases pp 331–354Cite as

Quantitative Bead-Based Flow Cytometry for Assaying Rab7 GTPase Interaction with the Rab-Interacting Lysosomal Protein (RILP) Effector Protein

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Rab7 facilitates vesicular transport and delivery from early endosomes to late endosomes as well as from late endosomes to lysosomes. The role of Rab7 in vesicular transport is dependent on its interactions with effector proteins, among them Rab-interacting lysosomal protein (RILP), which aids in the recruitment of active Rab7 (GTP-bound) onto dynein–dynactin motor complexes to facilitate late endosomal transport on the cytoskeleton. Here we detail a novel bead-based flow cytometry assay to measure Rab7 interaction with the Rab-interacting lysosomal protein (RILP) effector protein and demonstrate its utility for quantitative assessment and studying drug–target interactions. The specific binding of GTP-bound Rab7 to RILP is readily demonstrated and shown to be dose-dependent and saturable enabling K d and B max determinations. Furthermore, binding is nearly instantaneous and temperature-dependent. In a novel application of the assay method, a competitive small molecule inhibitor of Rab7 nucleotide binding (CID 1067700 or ML282) is shown to inhibit the Rab7–RILP interaction. Thus, the assay is able to distinguish that the small molecule, rather than incurring the active conformation, instead ‘locks’ the GTPase in the inactive conformation. Together, this work demonstrates the utility of using a flow cytometry assay to quantitatively characterize protein–protein interactions involving small GTPases and which has been adapted to high-throughput screening. Further, the method provides a platform for testing small molecule effects on protein–protein interactions, which can be relevant to drug discovery and development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452

    Article  CAS  PubMed  Google Scholar 

  2. Meresse S, Gorvel JP, Chavrier P (1995) The rab7 GTPase resides on a vesicular compartment connected to lysosomes. J Cell Sci 108:3349–3358

    CAS  PubMed  Google Scholar 

  3. Press B, Feng Y, Hoflack B et al (1998) Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol 140:1075–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bucci C, Thomsen P, Nicoziani P et al (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Saxena S, Bucci C, Weis J et al (2005) The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 25:10930–10940

    Article  CAS  PubMed  Google Scholar 

  6. Gutierrez MG, Munafó DB, Berón W et al (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117:2687–2697

    Article  CAS  PubMed  Google Scholar 

  7. Jager S, Bucci C, Tanida I et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848

    Article  PubMed  Google Scholar 

  8. Spinosa MR, Progida C, De Luca A et al (2008) Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J Neurosci 28:1640–1648

    Article  CAS  PubMed  Google Scholar 

  9. Castino R, Lazzeri G, Lenzi P et al (2008) Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 106:1426–1439

    Article  CAS  PubMed  Google Scholar 

  10. Bains M, Zaegel V, Mize-Berge J et al (2011) IGF-I stimulates Rab7–RILP interaction during neuronal autophagy. Neurosci Lett 488:112–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chan CC, Epstein D, Hiesinger PR (2011) Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 71:1227–1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Midorikawa R, Yamamoto-Hino M, Awano W et al (2010) Autophagy-dependent rhodopsin degradation prevents retinal degeneration in Drosophila. J Neurosci 30:10703–10719

    Article  CAS  PubMed  Google Scholar 

  13. Takacs-Vellai K, Bayci A, Vellai T (2006) Autophagy in neuronal cell loss: a road to death. Bioessays 28:1126–1131

    Article  CAS  PubMed  Google Scholar 

  14. Choudhury A, Dominguez M, Puri V et al (2002) Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 109:1541–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Haskell RE, Carr CJ, Pearce DA et al (2000) Batten disease: evaluation of CLN3 mutations on protein localization and function. Hum Mol Genet 9:735–744

    Article  CAS  PubMed  Google Scholar 

  16. Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8:23–30

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Chen L, Wang S et al (2009) Rab7: roles in membrane trafficking and disease. Biosci Rep 29:193–209

    Article  PubMed  Google Scholar 

  18. Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3:e233

    Article  PubMed Central  PubMed  Google Scholar 

  19. Agola JO, Jim PA, Ward HH et al (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80:305–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bucci C, De Gregorio L, Bruni CB (2001) Expression analysis and chromosomal assignment of PRA1 and RILP genes. Biochem Biophys Res Commun 286:815–819

    Article  CAS  PubMed  Google Scholar 

  21. Cantalupo G, Alifano P, Roberti V et al (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20:683–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B disease. Biochem Soc Trans 37:1027–1031

    Article  CAS  PubMed  Google Scholar 

  23. Jordens I, Fernandez-Borja M, Marsman M et al (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11:1680–1685

    Article  CAS  PubMed  Google Scholar 

  24. Johansson M, Lehto M, Tanhuanpaa K et al (2005) The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol Biol Cell 16:5480–5492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Johansson M, Rocha N, Zwart W et al (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J Cell Biol 176:459–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Harrison RE, Brumell JH, Khandani A et al (2004) Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 15:3146–3154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Marsman M, Jordens I, Kuijl C et al (2004) Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol Biol Cell 15:2954–2964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sun J, Deghmane AE, Bucci C et al (2009) Detection of activated Rab7 GTPase with an immobilized RILP probe. Methods Mol Biol 531:57–69

    Article  CAS  PubMed  Google Scholar 

  29. Peralta ER, Martin BC, Edinger AL (2010) Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence. J Biol Chem 285:16814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Agola JO, Hong L, Surviladze Z et al (2012) A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition. ACS Chem Biol 7:1095–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Simons PC, Shi M, Foutz T et al (2003) Ligand-receptor-G-protein molecular assemblies on beads for mechanistic studies and screening by flow cytometry. Mol Pharmacol 64:1227–1238

    Article  CAS  PubMed  Google Scholar 

  32. Waller A, Simons PC, Biggs SM et al (2004) Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Trends Pharmacol Sci 25:663–669

    Article  CAS  PubMed  Google Scholar 

  33. Butt TR, Edavettal SC, Hall JP et al (2005) Sumo fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Tessema M, Simons PC, Cimino DF et al (2006) Glutathione-S-transferase-green fluorescent protein fusion protein reveals slow dissociation from high site density beads and measures free GSH. Cytometry A 69:326–334

    Article  PubMed  Google Scholar 

  35. Simons PC, Sklar LA, Prossnitz ER et al (2010) Glutathione beads and GST fusion proteins. STCUNM (Albuquerque, NM) Sanford-Burnham Medical Research Institute (La Jolla, CA), USA

    Google Scholar 

  36. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Nguyen TN, Goodrich JA (2006) Protein-protein interaction assays: eliminating false positive interactions. Nat Methods 3:135–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Schwartz SL, Tessema M, Buranda T et al (2008) Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases. Anal Biochem 381:258–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Buranda T, BasuRay S, Swanson S et al (2013) Rapid parallel flow cytometry assays of active GTPases using effector beads. Anal Biochem 442:149–157

    Article  CAS  PubMed  Google Scholar 

  40. Rosales KR, Peralta ER, Guenther GG et al (2009) Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis. Mol Biol Cell 20:2831–2840

    Article  CAS  Google Scholar 

  41. Hong L, Guo Y, BasuRay S et al. A Pan-GTPase inhibitor as a molecular probe. PLoS One under review

    Google Scholar 

  42. Wandinger-Ness A, Sklar LA, Agola JO et al (2014) Rab7 GTPase inhibitors and related methods of treatment. STCUNM (Albuquerque, NM) University of Kansas (Lawrence, KS), USA

    Google Scholar 

  43. Oprea TI, Sklar LA, Agola JO et al. Novel activities of select NSAID R-enantiomers against Rac1 and Cdc42 GTPases. PLoS One under review

    Google Scholar 

  44. Guo Y, Kenney SR, Cook L et al. Novel mechanism of therapeutic benefit through ketorolac usage in ovarian cancer patients. J Clin Oncol under review

    Google Scholar 

  45. Surviladze Z, Waller A, Wu Y et al (2010) Identification of a small GTPase inhibitor using a high-throughput flow cytometry bead-based multiplex assay. J Biomol Screen 15:10–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Surviladze Z, Young SM, Sklar LA (2012) High-throughput flow cytometry bead-based multiplex assay for identification of Rho GTPase inhibitors. Methods Mol Biol 827:253–270

    Article  CAS  PubMed  Google Scholar 

  47. Surviladze Z, Ursu O, Miscioscia F et al (2010) Three small molecule pan activator families of Ras-related GTPases. Probe reports from the NIH Molecular Libraries Program

    Google Scholar 

  48. Surviladze Z, Waller A, Strouse JJ et al (2010) A potent and selective inhibitor of Cdc42 GTPase. Probe reports from the NIH Molecular Libraries Program

    Google Scholar 

  49. Hong L, Simons P, Waller A et al (2010) A small molecule pan-inhibitor of Ras-superfamily GTPases with high efficacy towards Rab7. Probe reports from the NIH Molecular Libraries Program

    Google Scholar 

  50. Hong L, Surviladze Z, Ursu O et al (2013) Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem 288:8531–8543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. He L, Olson DP, Wu X et al (2003) A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP → YFP fluorescence resonance energy transfer (FRET). Cytometry A 55:71–85

    Article  PubMed  Google Scholar 

  52. Dye BT, Schell K, Miller DJ et al (2005) Detecting protein-protein interaction in live yeast by flow cytometry. Cytometry A 63:77–86

    Article  PubMed  Google Scholar 

  53. Chen J, Carter MB, Edwards BS et al (2012) High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions. Cytometry A 81:90–98

    Article  PubMed Central  PubMed  Google Scholar 

  54. Schreiber G (2002) Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 12:41–47

    Article  CAS  PubMed  Google Scholar 

  55. Flinn RJ, Yan Y, Goswami S et al (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21:833–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Zhang XM, Walsh B, Mitchell CA et al (2005) TBC domain family, member 15 is a novel mammalian Rab GTPase-activating protein with substrate preference for Rab7. Biochem Biophys Res Commun 335:154–161

    Article  CAS  PubMed  Google Scholar 

  57. Rocha N, Kuijl C, van der Kant R et al (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 185:1209–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mizuno K, Kitamura A, Sasaki T (2003) Rabring7, a novel Rab7 target protein with a RING finger motif. Mol Biol Cell 14:3741–3752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Mizuno K, Sakane A, Sasaki T (2005) Rabring7: a target protein for rab7 small g protein. Methods Enzymol 403:687–696

    Article  CAS  PubMed  Google Scholar 

  60. Dong J, Chen W, Welford A et al (2004) The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J Biol Chem 279:21334–21342

    Article  CAS  PubMed  Google Scholar 

  61. Mukherjee S, Dong J, Heincelman C et al (2005) Functional analyses and interaction of the XAPC7 proteasome subunit with Rab7. Methods Enzymol 403:650–663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was generously supported by National Science Foundation (MCB0956027) and the National Institutes of Health (R21NS7740241) to AWN and (P30CA1181000, U54MH074425, and U54MH084690) to LAS. DS was supported as a visiting MARC scholar (T34 GM008395, PI Zavala, CSUN) and as a summer intern (ASERT IRACDA K12 GM088021, PI Wandinger-Ness). We thank Ms. Janet Kelly for administrative support. We also acknowledge Elsa Romero and Patricia Jim for technical support. Small molecule screening was performed in the NMMLSC/UNMCMD and flow cytometry assays were conducted in the Flow Cytometry Shared Resource Center supported by the University of New Mexico Cancer Center (P30 CA11810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Wandinger-Ness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Agola, J.O. et al. (2015). Quantitative Bead-Based Flow Cytometry for Assaying Rab7 GTPase Interaction with the Rab-Interacting Lysosomal Protein (RILP) Effector Protein. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics