Skip to main content

Abstract

Thermal radiation is the dominant mode of heat transfer in flames with characteristic lengths exceeding approximately 0.2 m. It is for this reason that quantitative analysis of fire dynamics requires a working knowledge of thermal radiation. This chapter will introduce the fundamentals of thermal radiation and offer several methods for calculating radiant heat transfer in fires. Basic thermal radiation concepts are presented with an emphasis on application to fire phenomena; the reader is referred the literature for specialized topics [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. deRis, 17th Symposium (International) on Combustion, 1003, Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  2. S.C. Lee and C.L. Tien, Progress in Energy and Combustion Science, 8, 41 (1982).

    Google Scholar 

  3. G.M. Faeth, S.M. Jeng, and J. Gore, in Heat Transfer in Fire and Combustion Systems, American Society of Mechanical Engineers, New York (1985).

    Google Scholar 

  4. Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2002.

    Google Scholar 

  5. H.C. Hottel and A.F. Sarofim, Radiative Heat Transfer, McGraw-Hill, New York (1967).

    Google Scholar 

  6. R. Siegel and H.R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York (1981).

    Google Scholar 

  7. Bejan, A., Heat Transfer, John Wiley & Sons, New York, 1993.

    MATH  Google Scholar 

  8. Hallman, J.R., “Ignition characteristics of plastics and rubber,” Ph.D. Dissertation, University of Oklahoma, 1971.

    Google Scholar 

  9. Hallman, J.R., Welker, J.R., and Sliepcevich, C.M., “Polymer surface reflectance–absorptance characteristics,” Polymer Engineering and Science 14: 717–723 (1974).

    Article  Google Scholar 

  10. Hallman, J.R., Sliepcevich, C.M., and Walker, J.R., “Radiation absorption for polymers: The radiant panel and carbon arcs as radiant heat sources,” Journal of Fire & Flammability 9: 353–366 (1978).

    Google Scholar 

  11. Wesson, H.R., Welker, J.R., and Sliepcevich, C.M., “The piloted ignition of wood by thermal radiation,” Combustion and Flame 16: 303–310 (1971).

    Article  Google Scholar 

  12. Försth, M. and Roos, A., “Absorptivity and its Dependence on Heat Source Temperature and Degree of Thermal Breakdown,” Fire and Materials 35: 285–301 (2011).

    Article  Google Scholar 

  13. Janssens, M., “Piloted ignition of wood: a review,” Fire and Materials 15: 151–167 (1991).

    Article  Google Scholar 

  14. Janssens, M. and Douglas, B., “Wood and wood products,” in Handbook of Building Materials for Fire Protection, Ed. Harper, C.A., pp. 7.1–7.58, McGraw–Hill, New York, 2004.

    Google Scholar 

  15. Kashiwagi, T. and Ohlemiller, T.J., “A study of oxygen effects on nonflaming transient gasification of PMMA and PE during thermal irradiation,” Proceedings of the Combustion Institute 19: 815–823 (1982).

    Google Scholar 

  16. Modak, A.T. and Croce, P.A., “Plastic pool fires,” Combustion and Flame 30: 251–265 (1977).

    Article  Google Scholar 

  17. E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, McGraw-Hill, New York (1978).

    MATH  Google Scholar 

  18. J.R. Howell, A Catalog of Radiation Configuration Factors, McGraw-Hill, New York (1982).

    Google Scholar 

  19. C.L. Tien, in Handbook of Heat Transfer Fundamentals, McGraw-Hill, pp 14.36, New York (1985).

    Google Scholar 

  20. Oppenheim, A.K, Trans. ASME, 65, 725, 1956.

    Google Scholar 

  21. C.L. Tien, Advances in Heat Transfer, 5, 253 (1968).

    Google Scholar 

  22. D.K. Edwards, in Handbook of Heat Transfer Fundamentals, McGraw-Hill, pp 14.53, New York (1985).

    Google Scholar 

  23. D.K. Edwards, Advances in Heat Transfer, 12, 115 (1976).

    Google Scholar 

  24. G.B. Ludwig, W. Malkmus, J.E. Reardon, and J.A.L. Thompson, Handbook of Radiation from Combustion Gases, NASA SP- 3080, Washington (1973).

    Google Scholar 

  25. T.F. Smith, Z.F. Shen, and J.N. Friedman, Journal of Heat Transfer, 104, 602 (1982).

    Google Scholar 

  26. J.D. Felske and C.L. Tien, Combustion Science and Technology, 11, 111 (1975).

    Google Scholar 

  27. M.M. Abu-Romia and C.L. Tien,, Journal of Quantitative Spectroscopy and Radiative Transfer, 107, 143 (1966).

    Google Scholar 

  28. M.A. Brosmer and C.L. Tien, Journal of Quantitative Spectroscopy and Radiative Transfer, 33, 521 (1985).

    Google Scholar 

  29. M.A. Brosmer and C.L. Tien, Journal of Heat Transfer, 107, 943 (1985).

    Google Scholar 

  30. M.A. Brosmer and C.L. Tien, Combustion Science and Technology, 48, 163 (1986).

    Google Scholar 

  31. S.C. Lee and C.L. Tien, 18th Symposium (International) on Combustion, Combustion Institute, 1159, Pittsburgh (1981).

    Google Scholar 

  32. C.L. Tien, in Handbook of Heat Transfer Fundamentals, McGraw-Hill, pp 14.83, New York (1985).

    Google Scholar 

  33. G.L. Hubbard and C.L. Tien, Journal of Heat Transfer, 100, 235 (1978).

    Google Scholar 

  34. J.D. Felske and C.L. Tien, Journal of Heat Transfer, 99, 458 (1977).

    Google Scholar 

  35. J.D. Felske and C.L. Tien, Combustion Science and Technology, 7, 25 (1977).

    Google Scholar 

  36. W.W. Yuen and C.L. Tien, 16th Symposium (International) on Combustion, Combustion Institute, 1481, Pittsburgh (1977).

    Google Scholar 

  37. A. Dayan and C.L. Tien, Combustion Science and Technology, 9, 41 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Nomenclature, Greek Symbols and Subscripts

A

Area (m2)

C

Correction factor for mean beam length

C 0

Soot concentration parameter

C 2

Planck’s second constant (1.4388 × 10−2 m · K)

c

Speed of light in the medium (m/s)

c 0

Speed of light in a vacuum (2.998 × 108 m/s)

E

Radiative emissive power (W/m2)

F i−j

Configuration factor from surface i to surface j

f v

Soot volume fraction

G

Irradiation or radiative heat flux received by surface (W/m2)

H

Height (m)

h

Planck’s constant (6.6256 × 10−34 J s)

I

Radiation intensity (W/m2)

\( \overrightarrow{\boldsymbol{i}} \), \( \overrightarrow{\boldsymbol{j}} \), \( \overrightarrow{\boldsymbol{k}} \)

Cartesian coordinate direction vectors

J

Radiosity or radiative heat flux leaving surface (W/m2)

k

Boltzmann constant (1.3806 × 10−23 J/K), or infrared optical constant of soot (imaginary component), or thermal conductivity (W/m K)

L

Mean beam length or distance (m)

L 0

Geometrical mean beam length (m)

n

Index of refraction (c0/c) or infrared optical constant of soot (real component)

\( \overrightarrow{\boldsymbol{n}} \)

Unit normal vector

P a

Partial pressure of absorbing gas (Pa)

P e

Effective pressure (Pa)

Q

Energy rate (W)

q˙″

Heat flux (W/m2)

\( \overrightarrow{R} \)

Line of sight vector

r

Radius of cylinder (m)

S

Pathlength (m)

T

Temperature (K)

t

Time (s)

u, v, w

Cartesian components of unit vector \( \overrightarrow{n} \)

V

Volume (m3)

X

Pressure pathlength, \( {\displaystyle {\int}_0^s{P}_ax\left(\xi \right)d\left(\xi \right)} \) (atm-m)

x

Spatial coordinate (m)

α

Absorptivity or thermal diffusivity k/pcp (m2/s)

β

Angle from normal (radians)

ε

Emissivity

θ

Polar angle (radians)

κ

Extinction coefficient or absorption coefficient (m − l)

λ

Wavelength (m)

μ

Micron (10−6 m)

μλ

Defined parameter, Equation 4.73

ν

Frequency (s−t)

ξ

Integration dummy variable

ρ

Reflectivity or density (kg/m3)

Ω

Solid angle (steradians)

σ

Stefan-Boltzmann constant (5.6696 × 10−B W/m2K4)

τ

Transmissivity or optical pathlength

ϕ

Azimuthal angle (radians)

χ

Fractional measure

a

Actual

b

Blackbody or base

e

External

f

Flame

g

Gas

i

Initial or ith surface

j

Summation variable or jth surface

m

Mean value

0

Original

P

Planck mean

R

Rosseland mean

s

Surface or soot

t

Total

w

Wall

λ

Spectral wavelength

ν

Spectral frequency

Ambient

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Lautenberger, C., Tien, C.L., Lee, K.Y., Stretton, A.J. (2016). Radiation Heat Transfer. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics