Skip to main content

Silver Nanoclusters for RNA Nanotechnology: Steps Towards Visualization and Tracking of RNA Nanoparticle Assemblies

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

The growing interest in designing functionalized, RNA-based nanoparticles (NPs) for applications such as cancer therapeutics requires simple, efficient assembly assays. Common methods for tracking RNA assemblies such as native polyacrylamide gels and atomic force microscopy are often time-intensive and, therefore, undesirable. Here we describe a technique for rapid analysis of RNA NP assembly stages using the formation of fluorescent silver nanoclusters (Ag NCs). This method exploits the single-stranded specificity and sequence dependence of Ag NC formation to produce unique optical readouts for each stage of RNA NP assembly, obtained readily after synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukerjee A, Ranjan AP, Vishwanatha JK (2012) Combinatorial nanoparticles for cancer diagnosis and therapy. Curr Med Chem 19:3714–3721

    Article  CAS  Google Scholar 

  2. Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  4. Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  CAS  Google Scholar 

  5. Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13:819–829

    Article  CAS  Google Scholar 

  6. Berkhout B, Sanders RW (2011) Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 92:7–14

    Article  CAS  Google Scholar 

  7. Wu J, Nandamuri KM (2004) Inhibition of hepatitis viral replication by siRNA. Expert Opin Biol Ther 4:1649–1659

    Article  CAS  Google Scholar 

  8. Farokhzad OC, Jon S, Khademhosseini A et al (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    Article  CAS  Google Scholar 

  9. McNamara JO 2nd, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  CAS  Google Scholar 

  10. Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334

    Article  CAS  Google Scholar 

  11. Afonin KA, Viard M, Koyfman AY et al (2014) Multifunctional RNA nanoparticles. Nano Lett 14:5662–5671

    Article  CAS  Google Scholar 

  12. Afonin KA, Lindsay B, Shapiro BA (2013) Engineered RNA nanodesigns for applications in RNA nanotechnology. RNA Nanotechnol 1:1–15

    Article  Google Scholar 

  13. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  Google Scholar 

  14. Shukla GC, Haque F, Tor Y et al (2011) A boost for the emerging field of RNA nanotechnology. ACS Nano 5:3405–3418

    Article  CAS  Google Scholar 

  15. Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  Google Scholar 

  16. Afonin KA, Grabow WW, Walker FM et al (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6:2022–2034

    Article  CAS  Google Scholar 

  17. Afonin KA, Kireeva M, Grabow WW et al (2012) Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett 12:5192–5195

    Article  CAS  Google Scholar 

  18. Afonin KA, Viard M, Kagiampakis I et al (2015) Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 9:251–259

    Article  CAS  Google Scholar 

  19. Afonin KA, Lin YP, Calkins ER et al (2012) Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Res 40:2168–2180

    Article  CAS  Google Scholar 

  20. Severcan I, Geary C, Chworos A et al (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779

    Article  CAS  Google Scholar 

  21. Chworos A, Severcan I, Koyfman AY et al (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  CAS  Google Scholar 

  22. Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  CAS  Google Scholar 

  23. Shu D, Shu Y, Haque F et al (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  Google Scholar 

  24. Shu Y, Haque F, Shu D et al (2013) Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19(6):767–777

    Article  CAS  Google Scholar 

  25. Dibrov SM, McLean J, Parsons J et al (2011) Self-assembling RNA square. Proc Natl Acad Sci U S A 108:6405–6408

    Article  CAS  Google Scholar 

  26. Davis JH, Tonelli M, Scott LG et al (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382

    Article  CAS  Google Scholar 

  27. Afonin KA, Danilov EO, Novikova IV et al (2008) TokenRNA: a new type of sequence-specific, label-free fluorescent biosensor for folded RNA molecules. Chembiochem 9:1902–1905

    Article  CAS  Google Scholar 

  28. Afonin KA, Viard M, Martins AN et al (2013) Activation of different split functionalities on re-association of RNA-DNA hybrids. Nat Nanotechnol 8:296–304

    Article  CAS  Google Scholar 

  29. Schultz D, Gwinn E (2011) Stabilization of fluorescent silver clusters by RNA homopolymers and their DNA analogs: C, G versus A, T(U) dichotomy. Chem Commun (Camb) 47:4715–4717

    Article  CAS  Google Scholar 

  30. Petty JT, Zheng J, Hud NV et al (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212

    Article  CAS  Google Scholar 

  31. Gwinn EG, O’Neill PR, Guerrero AJ et al (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283

    Article  CAS  Google Scholar 

  32. Yang SW, Vosch T (2011) Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem 83:6935–6939

    Article  CAS  Google Scholar 

  33. Yeh HC, Sharma J, Han JJ et al (2010) A DNA–silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110

    Article  CAS  Google Scholar 

  34. Guo W, Yuan J, Dong Q et al (2010) Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc 132:932–934

    Article  CAS  Google Scholar 

  35. Ma K, Cui Q, Liu G et al (2011) DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology 22:305502

    Article  Google Scholar 

  36. Richards CI, Choi S, Hsiang JC et al (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039

    Article  CAS  Google Scholar 

  37. Schultz D, Gardner K, Oemrawsingh SS et al (2013) Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv Mater 25(20):2797–2803

    Article  CAS  Google Scholar 

  38. Yu J, Choi S, Richards CI et al (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439

    Article  CAS  Google Scholar 

  39. Oemrawsingh SSR, Markešević N, Gwinn EG et al (2012) Spectral properties of individual DNA-hosted silver nanoclusters at low temperatures. Phys Chem C 116:25568–25575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (to BAS). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This research was also supported by NIH grant no. R01GM-079604 (to LJ) and by NSF grants CHE-1213895 and CHE-0848375 (to EG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luc Jaeger , Elisabeth Gwinn or Bruce A. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Afonin, K.A., Schultz, D., Jaeger, L., Gwinn, E., Shapiro, B.A. (2015). Silver Nanoclusters for RNA Nanotechnology: Steps Towards Visualization and Tracking of RNA Nanoparticle Assemblies. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics