Skip to main content

Identification of Direct Targets of Plant Transcription Factors Using the GR Fusion Technique

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

The glucocorticoid receptor-dependent activation of plant transcription factors has proven to be a powerful tool for the identification of their direct target genes. In the absence of the synthetic steroid hormone dexamethasone (dex), transcription factors fused to the hormone-binding domain of the glucocorticoid receptor (TF-GR) are held in an inactive state, due to their cytoplasmic localization. This requires physical interaction with the heat shock protein 90 (HSP90) complex. Hormone binding leads to disruption of the interaction between GR and HSP90 and allows TF-GR fusion proteins to enter the nucleus. Once inside the nucleus, they bind to specific DNA sequences and immediately activate or repress expression of their targets. This system is well suited for the identification of direct target genes of transcription factors in plants, as (A) there is little basal protein activity in the absence of dex, (B) steroid application leads to rapid transcription factor activation, (C) no side effects of dex treatment are observed on the physiology of the plant, and (D) secondary effects of transcription factor activity can be eliminated by simultaneous application of an inhibitor of protein biosynthesis, cycloheximide (cyc). In this chapter, we describe detailed protocols for the preparation of plant material, for dex and cyc treatment, for RNA extraction, and for the PCR-based or genome-wide identification of direct targets of transcription factors fused to GR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Locker J (2001) Transcription factors. Academic, San Diego

    Google Scholar 

  2. Zuo J, Niu Q, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plant. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  3. Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM (2008) HD-ZIPIII activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell 20:920–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    Article  CAS  PubMed  Google Scholar 

  5. Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in Arabidopsis floral meristem. Gene Dev 23:1791–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Roslan HA, Salter MG, Wood CD, White MR, Croft KP, Robson F, Coupland G, Doonan J, Laufs P, Tomsett AB, Caddick MX (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28:225–235

    Article  CAS  PubMed  Google Scholar 

  7. Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dalman FC, Scherrer LC, Taylor LP, Akil H, Pratt WB (1991) Localization of the 90 kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J Biol Chem 266:3482–3490

    CAS  PubMed  Google Scholar 

  9. Sablowski RWM, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  CAS  PubMed  Google Scholar 

  10. Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I (2005) New pOP/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  CAS  PubMed  Google Scholar 

  11. Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667

    Article  CAS  PubMed  Google Scholar 

  12. Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-thoroughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  CAS  PubMed  Google Scholar 

  13. Samalova M, Brzobohaty B, Moore I (2005) pOP6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J 41:919–935

    Article  CAS  PubMed  Google Scholar 

  14. Lloyd AM, Schena M, Walbot V, Davis R (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439

    Article  CAS  PubMed  Google Scholar 

  15. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  CAS  PubMed  Google Scholar 

  16. Wagner D, Sablowski RWM, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–583

    Article  CAS  PubMed  Google Scholar 

  17. Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci U S A 101:1775–1780

    Google Scholar 

  18. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916

    Article  CAS  PubMed  Google Scholar 

  19. William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101:1775–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  CAS  PubMed  Google Scholar 

  22. Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  CAS  PubMed  Google Scholar 

  23. Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHOOT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e249

    Article  PubMed Central  Google Scholar 

  24. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network required resistance in plants. PLoS Pathog 2:e123

    Article  PubMed Central  PubMed  Google Scholar 

  25. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wenkel S, Emery J, Hou B-H, Evans MMS, Barton MK (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 19:3379–3390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM et al (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  CAS  PubMed  Google Scholar 

  29. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE et al (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20:430–443

    Article  CAS  PubMed  Google Scholar 

  31. Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    Article  CAS  PubMed  Google Scholar 

  32. Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T, Kerstetter R, Michaels S, Barton MK (2013) Establishing a framework for the Ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III homeodomain leucine zipper and KANADI regulation. Plant Cell 25:3228–3249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Eklund M, Staldal V, Valsecchi I, Clerlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sunstrom JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Article  CAS  PubMed  Google Scholar 

  35. Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129:565–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W (2009) DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136:1643–1651

    Article  CAS  PubMed  Google Scholar 

  37. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  38. Wagner D, Meyerowitz EM (2011) Switching on flowers: transient LEAFY induction reveals novel aspects of the regulation of reproductive development in Arabidopsis. Front Plant Sci 2:60

    Article  PubMed Central  PubMed  Google Scholar 

  39. Yamaguchi N, Winter C, Wu M-F, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–664

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi N, Wu M-F, Winter C, Berns M, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek B, Wagner D (2013) A molecular framework for auxin-mediated initiation of floral primordia. Dev Cell 24:271–282

    Article  CAS  PubMed  Google Scholar 

  41. Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134

    Article  CAS  PubMed  Google Scholar 

  42. Smyth G (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

    Google Scholar 

  43. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  44. Wagner D, Sablowski RW (2001) Glucocorticoid fusions for transcription factor. In: Weigel D, Glazebrook J (eds) Arabidopsis—a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press

    Google Scholar 

  45. Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA, Speed TP (2005) Quality assessment of Affymetrix GeneChip data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor, statistics for biology and health. Springer, New York, pp 33–47

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by IOS grant 1257111 to D.W, JSPS postdoctoral fellowships for research abroad to N.Y., NIH Developmental Biology Training Grant T32-HD007516 and NIH Ruth L. Kirschstein NRSA F32 Fellowship GM106690-01 to C.M.W., and Science Foundation Ireland to F.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamaguchi, N., Winter, C.M., Wellmer, F., Wagner, D. (2015). Identification of Direct Targets of Plant Transcription Factors Using the GR Fusion Technique. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics