Skip to main content

Bioluminescence Resonance Energy Transfer to Detect Protein-Protein Interactions in Live Cells

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Bioluminescence resonance energy transfer (BRET) is a valuable tool to detect protein-protein interactions. BRET utilizes bioluminescent and fluorescent protein tags with compatible emission and excitation properties, making it possible to examine resonance energy transfer when the tags are in close proximity (<10 nm) as a typical result of protein-protein interactions. Here we describe a protocol for detecting BRET from two known protein binding partners (Gαi1 and RGS14) in HEK 293 cells using Renilla luciferase and yellow fluorescent protein tags. We discuss the calculation of the acceptor/donor ratio as well as net BRET and demonstrate that BRET can be used as a platform to investigate the regulation of protein-protein interactions in live cells in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Kanauchi A, von Arnim AG et al (2003) Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol 360:289–301

    Article  CAS  PubMed  Google Scholar 

  4. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  CAS  PubMed  Google Scholar 

  5. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  6. Romero-Fernandez W, Borroto-Escuela DO, Tarakanov AO et al (2011) Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochem Biophys Res Commun 409:764–768

    Article  CAS  PubMed  Google Scholar 

  7. Gales C, Rebois RV, Hogue M et al (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2:177–184

    Article  CAS  PubMed  Google Scholar 

  8. Angers S, Salahpour A, Joly E et al (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97:3684–3689

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Hamdan FF, Audet M, Garneau P et al (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475

    Article  CAS  PubMed  Google Scholar 

  10. Vellano CP, Maher EM, Hepler JR et al (2011) G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of g protein signaling 14 RGS14.Galphai1 complex in live cells. J Biol Chem 286:38659–38669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Oner SS, Maher EM, Breton B et al (2010) Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai. J Biol Chem 285:20588–20594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Oner SS, An N, Vural A et al (2010) Regulation of the AGS3.G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem 285:33949–33958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jiang LI, Collins J, Davis R et al (2007) Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 282:10576–10584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lan TH, Liu Q, Li C et al (2012) Sensitive and high resolution localization and tracking of membrane proteins in live cells with BRET. Traffic 13:1450–1456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Couturier C, Deprez B (2012) Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells. Front Endocrinol 3:100

    Article  Google Scholar 

  16. Hollinger S, Taylor JB, Goldman EH et al (2001) RGS14 is a bifunctional regulator of Galphai/o activity that exists in multiple populations in brain. J Neurochem 79:941–949

    Article  CAS  PubMed  Google Scholar 

  17. Kimple RJ, De Vries L, Tronchere H et al (2001) RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem 276:29275–29281

    Article  CAS  PubMed  Google Scholar 

  18. Gibson SK, Gilman AG (2006) Gialpha and Gbeta subunits both define selectivity of G protein activation by alpha2-adrenergic receptors. Proc Natl Acad Sci U S A 103:212–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnol J 3:311–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Hepler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brown, N.E., Blumer, J.B., Hepler, J.R. (2015). Bioluminescence Resonance Energy Transfer to Detect Protein-Protein Interactions in Live Cells. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_30

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics